Files
hakorune/docs/RESOLVER_API.md
Selfhosting Dev c04b0c059d feat(llvm): Major refactor - BuilderCursor全域化 & Resolver API導入
Added:
- Resolver API (resolve_i64) for unified value resolution with per-block cache
- llvmlite harness (Python) for rapid PHI/SSA verification
- Comprehensive LLVM documentation suite:
  - LLVM_LAYER_OVERVIEW.md: Overall architecture and invariants
  - RESOLVER_API.md: Value resolution strategy
  - LLVM_HARNESS.md: Python verification harness

Updated:
- BuilderCursor applied to ALL lowering paths (externcall/newbox/arrays/maps/call)
- localize_to_i64 for dominance safety in strings/compare/flow
- NYASH_LLVM_DUMP_ON_FAIL=1 for debug IR output

Key insight: LoopForm didn't cause problems, it just exposed existing design flaws:
- Scattered value resolution (now unified via Resolver)
- Inconsistent type conversion placement
- Ambiguous PHI wiring responsibilities

Next: Wire Resolver throughout, achieve sealed=ON green for dep_tree_min_string
2025-09-12 20:06:48 +09:00

26 lines
1.2 KiB
Markdown

# Resolver API (Minimal i64 Prototype)
Goals
- Centralize "ValueId → current-block value" resolution.
- Guarantee dominance by localizing values at the start of the block (before non-PHI).
- De-duplicate per (block, value) to avoid redundant PHIs/casts.
Design
- `Resolver` keeps small per-function caches keyed by `(BasicBlockId, ValueId)`.
- `resolve_i64(...)` returns an `i64`-typed `IntValue`, inserting PHI and casts as needed using sealed snapshots.
- Internally uses `flow::localize_to_i64(...)` for now; later, fold logic directly and add `resolve_ptr/resolve_f64`.
Usage (planned wiring)
- Create `let mut resolver = instructions::Resolver::new();` at function lowering start.
- Replace all integer value fetches in lowerers with `resolver.resolve_i64(...)`.
- Keep builder insertion discipline via `BuilderCursor`.
Next
- Add `resolve_ptr(...)` and `resolve_f64(...)` with same caching discipline.
- Migrate existing `localize_to_i64` call sites to the resolver.
- Enforce vmap direct access ban in lowerers (Resolver-only for reads).
Acceptance tie-in
- Combined with LoopForm: dispatch-only PHI + resolver-based value access → dominance violations drop to zero (A2.5).