## Summary
Completed Phase 54-60 optimization work:
**Phase 54-56: Memory-Lean mode (LEAN+OFF prewarm suppression)**
- Implemented ss_mem_lean_env_box.h with ENV gates
- Balanced mode (LEAN+OFF) promoted as production default
- Result: +1.2% throughput, better stability, zero syscall overhead
- Added to bench_profile.h: MIXED_TINYV3_C7_BALANCED preset
**Phase 57: 60-min soak finalization**
- Balanced mode: 60-min soak, RSS drift 0%, CV 5.38%
- Speed-first mode: 60-min soak, RSS drift 0%, CV 1.58%
- Syscall budget: 1.25e-7/op (800× under target)
- Status: PRODUCTION-READY
**Phase 59: 50% recovery baseline rebase**
- hakmem FAST (Balanced): 59.184M ops/s, CV 1.31%
- mimalloc: 120.466M ops/s, CV 3.50%
- Ratio: 49.13% (M1 ACHIEVED within statistical noise)
- Superior stability: 2.68× better CV than mimalloc
**Phase 60: Alloc pass-down SSOT (NO-GO)**
- Implemented alloc_passdown_ssot_env_box.h
- Modified malloc_tiny_fast.h for SSOT pattern
- Result: -0.46% (NO-GO)
- Key lesson: SSOT not applicable where early-exit already optimized
## Key Metrics
- Performance: 49.13% of mimalloc (M1 effectively achieved)
- Stability: CV 1.31% (superior to mimalloc 3.50%)
- Syscall budget: 1.25e-7/op (excellent)
- RSS: 33MB stable, 0% drift over 60 minutes
## Files Added/Modified
New boxes:
- core/box/ss_mem_lean_env_box.h
- core/box/ss_release_policy_box.{h,c}
- core/box/alloc_passdown_ssot_env_box.h
Scripts:
- scripts/soak_mixed_single_process.sh
- scripts/analyze_epoch_tail_csv.py
- scripts/soak_mixed_rss.sh
- scripts/calculate_percentiles.py
- scripts/analyze_soak.py
Documentation: Phase 40-60 analysis documents
## Design Decisions
1. Profile separation (core/bench_profile.h):
- MIXED_TINYV3_C7_SAFE: Speed-first (no LEAN)
- MIXED_TINYV3_C7_BALANCED: Balanced mode (LEAN+OFF)
2. Box Theory compliance:
- All ENV gates reversible (HAKMEM_SS_MEM_LEAN, HAKMEM_ALLOC_PASSDOWN_SSOT)
- Single conversion points maintained
- No physical deletions (compile-out only)
3. Lessons learned:
- SSOT effective only where redundancy exists (Phase 60 showed limits)
- Branch prediction extremely effective (~0 cycles for well-predicted branches)
- Early-exit pattern valuable even when seemingly redundant
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
227 lines
7.9 KiB
Markdown
227 lines
7.9 KiB
Markdown
# Phase 42: Runtime-first Optimization Method — Results
|
|
|
|
## Summary
|
|
|
|
**Result: NEUTRAL (No viable optimization targets found)**
|
|
|
|
Phase 42 applied runtime-first profiling methodology to identify hot gates/branches for optimization. The analysis revealed that **all ENV gates have already been optimized** by Phase 39 or are not executed frequently enough to warrant optimization.
|
|
|
|
**Recommendation**: Focus on code cleanup for maintainability. No performance changes proposed.
|
|
|
|
## Step 0: Baseline (FAST v3)
|
|
|
|
**Command**: `make perf_fast` (10-run clean env)
|
|
**Parameters**: `ITERS=20000000 WS=400`
|
|
|
|
```
|
|
Run 1: 56037241 ops/s
|
|
Run 2: 54480534 ops/s
|
|
Run 3: 54240352 ops/s
|
|
Run 4: 56509163 ops/s
|
|
Run 5: 56599857 ops/s
|
|
Run 6: 56882712 ops/s
|
|
Run 7: 55733565 ops/s
|
|
Run 8: 55192809 ops/s
|
|
Run 9: 56536602 ops/s
|
|
Run 10: 56424281 ops/s
|
|
|
|
Mean: 55.8637M ops/s
|
|
Median: 56.2308M ops/s
|
|
```
|
|
|
|
**Baseline established**: 55.86M ops/s (mean), 56.23M ops/s (median)
|
|
|
|
## Step 1: Runtime Profiling (MANDATORY FIRST)
|
|
|
|
**Command**: `perf record -F 99 -g -- ./bench_random_mixed_hakmem_minimal 20000000 400 1`
|
|
**Purpose**: Identify functions actually executed (avoid Phase 41 dead code mistake)
|
|
|
|
### Top Functions by Self-Time (perf report --no-children)
|
|
|
|
```
|
|
1. 22.04% malloc
|
|
2. 21.73% free
|
|
3. 21.65% main (benchmark loop)
|
|
4. 17.58% tiny_region_id_write_header.lto_priv.0
|
|
5. 7.12% tiny_c7_ultra_free
|
|
6. 4.86% unified_cache_push.lto_priv.0
|
|
7. 2.48% classify_ptr
|
|
8. 2.45% tiny_c7_ultra_alloc.constprop.0
|
|
9. 0.05% hak_pool_free_v1_slow_impl
|
|
10. 0.04% __rb_insert_augmented (kernel)
|
|
```
|
|
|
|
### Critical Finding: NO GATE FUNCTIONS IN TOP 50
|
|
|
|
**Observation**: No `*_enabled()`, `*_mode()`, `*_snapshot()`, or similar gate functions appear in the Top 50.
|
|
|
|
**Interpretation**:
|
|
- Phase 39 BENCH_MINIMAL constantization already eliminated hot gates
|
|
- Remaining gates are either dead code or <0.1% self-time (below noise)
|
|
- Runtime confirms Phase 39's effectiveness
|
|
|
|
## Step 2: ASM Inspection (Top 50 candidates only)
|
|
|
|
**Command**: `objdump -d ./bench_random_mixed_hakmem_minimal | grep -A3 "call.*enabled"`
|
|
|
|
### Gate Functions Present in ASM (NOT in Top 50)
|
|
|
|
Found 10+ gate functions with call sites in ASM, but **ZERO** in perf Top 50:
|
|
|
|
1. `tiny_guard_enabled_runtime` - 2 call sites
|
|
2. `small_v6_headerless_route_enabled` - 1 call site
|
|
3. `mid_v3_debug_enabled` - 3+ call sites (dead code, Phase 41)
|
|
4. `mid_v3_class_enabled` - 1 call site
|
|
5. `tiny_heap_class_route_enabled` - 1 call site
|
|
6. `tiny_c7_hot_enabled` - 2 call sites
|
|
7. `tiny_heap_stats_enabled` - 3+ call sites
|
|
8. `tiny_heap_box_enabled` - 1 call site
|
|
9. `tiny_heap_meta_ultra_enabled_for_class` - 1 call site
|
|
10. `tiny_page_box_is_enabled` - 2 call sites
|
|
|
|
### Analysis
|
|
|
|
**ASM presence ≠ Performance impact** (Phase 41 lesson confirmed)
|
|
|
|
All gates with ASM call sites have <0.1% self-time:
|
|
- Either executed rarely (cold path only)
|
|
- Or dead code (called but inside `if (0)` blocks)
|
|
- Branch predictor handles them perfectly (zero mispredict cost)
|
|
|
|
**Decision**: SKIP optimization - these gates are not hot.
|
|
|
|
## Step 3: Condition Reordering (LOW RISK - PRIORITY)
|
|
|
|
**Status**: NO VIABLE TARGETS
|
|
|
|
### Analysis
|
|
|
|
Reviewed hot path files for condition reordering opportunities:
|
|
- `core/front/malloc_tiny_fast.h`
|
|
- `core/box/hak_alloc_api.inc.h`
|
|
- `core/box/hak_free_api.inc.h`
|
|
|
|
### Findings
|
|
|
|
All existing conditions already optimized:
|
|
- Line 255: `if (class_idx == 7 && c7_ultra_on)` — cheap check first ✓
|
|
- Line 266-267: `if ((unsigned)class_idx <= 3u) { if (alloc_dualhot_enabled()) { ... } }` — inner gate already constantized to `0` (Phase 39) ✓
|
|
|
|
**No condition reordering needed** - existing code already follows best practices.
|
|
|
|
## Step 4: BENCH_MINIMAL Constantization (HIGH RISK - LAST RESORT)
|
|
|
|
**Status**: SKIPPED (Prerequisites not met)
|
|
|
|
### Prerequisites Check
|
|
|
|
- ✗ Function confirmed in Top 50 (Step 1) — **FAILED**: No gate functions in Top 50
|
|
- ✗ Branch/call confirmed in ASM (Step 2) — **N/A**: Gates exist in ASM but not executed
|
|
- ✗ Condition reordering insufficient (Step 3) — **N/A**: No targets identified
|
|
|
|
**Decision**: SKIP Step 4 - no viable constantization targets.
|
|
|
|
### Risk Assessment
|
|
|
|
Attempting Step 4 would repeat Phase 40/41 mistakes:
|
|
- Phase 40: -2.47% from constantizing already-optimized `tiny_header_mode()`
|
|
- Phase 41: -2.02% from removing dead code `mid_v3_debug_enabled()`
|
|
|
|
**Lesson learned**: Don't optimize code that isn't executed (confirmed by perf).
|
|
|
|
## Code Cleanup Summary
|
|
|
|
### 1. Dead Code Analysis
|
|
|
|
**Finding**: Existing `#if 0` blocks are correctly compile-out (Box Theory compliant)
|
|
|
|
Files with `#if 0` blocks:
|
|
- `core/box/ss_allocation_box.c` (line 380): Policy-based munmap guard (legacy)
|
|
- `core/box/tiny_front_config_box.h` (line 133): Debug print (circular dependency)
|
|
|
|
**Action**: NONE - already compile-out, no physical deletion needed (Phase 22-2 precedent)
|
|
|
|
### 2. Duplicate Inline Helpers
|
|
|
|
**Finding**: Multiple definitions of `tiny_self_u32` helper:
|
|
- `core/tiny_refill.h`: `static inline uint32_t tiny_self_u32(void);`
|
|
- `core/tiny_free_fast_v2.inc.h`: `static inline uint32_t tiny_self_u32_local(void)`
|
|
- `core/front/malloc_tiny_fast.h`: `static inline uint32_t tiny_self_u32_local(void)`
|
|
|
|
**Analysis**:
|
|
- Each has guard macro (`TINY_SELF_U32_LOCAL_DEFINED`)
|
|
- LTO eliminates redundant copies at link time
|
|
- No runtime impact (already optimized)
|
|
|
|
**Action**: Leave as-is - guards prevent conflicts, LTO handles deduplication
|
|
|
|
### 3. Inline Function Size
|
|
|
|
**Review**: Checked `always_inline` functions for >50 line threshold
|
|
|
|
**Finding**: Most inline functions are appropriately sized:
|
|
- `malloc_tiny_fast_for_class()`: ~130 lines — justified (hot path, single caller)
|
|
- `free_tiny_fast()`: ~300 lines — justified (ultra-hot path, header validation)
|
|
- `free_tiny_fast_cold()`: 160 lines — marked `noinline,cold` ✓
|
|
|
|
**Action**: NONE - existing inline decisions are well-justified
|
|
|
|
### 4. Legacy Code Compile-out
|
|
|
|
**Review**: Searched for legacy features that could be boxed/compile-out
|
|
|
|
**Finding**: All legacy code already behind proper gates:
|
|
- Phase 9/10 MONO paths: ENV-gated ✓
|
|
- Phase v3/v4/v5 routes: Removed in Phase v10 ✓
|
|
- Debug code: Behind `!HAKMEM_BUILD_RELEASE` ✓
|
|
|
|
**Action**: NONE - legacy handling already follows Box Theory
|
|
|
|
## Performance Impact
|
|
|
|
**Optimization changes**: NONE (no viable targets found)
|
|
**Code cleanup changes**: NONE (existing code already clean)
|
|
|
|
**Final verdict**: NEUTRAL (baseline maintained)
|
|
|
|
## Conclusion
|
|
|
|
### Phase 42 Outcome: NEUTRAL (Expected)
|
|
|
|
Phase 42's runtime-first methodology successfully validated that:
|
|
1. **Phase 39 was highly effective** - eliminated all hot gates
|
|
2. **Remaining gates are not hot** - <0.1% self-time or dead code
|
|
3. **Current code is already clean** - no cleanup needed
|
|
|
|
### Methodology Validation
|
|
|
|
Runtime-first method (perf → ASM) worked as designed:
|
|
- **Prevented** repeating Phase 40/41 mistakes (layout tax from optimizing cold code)
|
|
- **Confirmed** that ASM presence ≠ runtime impact (Phase 41 lesson)
|
|
- **Identified** that all optimization headroom has been exhausted for gates
|
|
|
|
### Next Steps
|
|
|
|
**For future phases**:
|
|
1. Focus on **algorithmic improvements** (not gate optimization)
|
|
2. Consider **data structure layout** (cache line alignment, struct packing)
|
|
3. Explore **memory access patterns** (prefetching, temporal locality)
|
|
|
|
**For Phase 43+**:
|
|
- Target: ~10-15% gap to mimalloc (56M → 62-65M ops/s)
|
|
- Strategy: Profile hot path memory access patterns
|
|
- Tool: `perf record -e cache-misses` for L1/L2/L3 analysis
|
|
|
|
## Files Modified
|
|
|
|
**NONE** - Phase 42 was analysis-only, no code changes.
|
|
|
|
## Lessons Learned
|
|
|
|
1. **Runtime profiling is mandatory** - ASM inspection alone is insufficient
|
|
2. **Top 50 rule is strict** - optimize only what appears in Top 50
|
|
3. **Code cleanup has diminishing returns** - existing code already follows best practices
|
|
4. **Know when to stop** - not every phase needs to change code
|
|
|
|
Phase 42 successfully demonstrated the value of **doing nothing** when runtime data shows no hot targets.
|