Performance Achievements: - Tiny allocations: +180-280% (21M → 59-70M ops/s random mixed) - Single-thread: +24% (2.71M → 3.36M ops/s Larson) - 4T stability: 0% → 95% (19/20 success rate) - Overall: 91.3% of System malloc average (target was 40-55%) ✓ Phase 7 (Tasks 1-3): Core Optimizations - Task 1: Header validation removal (Region-ID direct lookup) - Task 2: Aggressive inline (TLS cache access optimization) - Task 3: Pre-warm TLS cache (eliminate cold-start penalty) Result: +180-280% improvement, 85-146% of System malloc Critical Bug Fixes: - Fix 64B allocation crash (size-to-class +1 for header) - Fix 4T wrapper recursion bugs (BUG #7, #8, #10, #11) - Remove malloc fallback (30% → 50% stability) Phase 2a: SuperSlab Dynamic Expansion (CRITICAL) - Implement mimalloc-style chunk linking - Unlimited slab expansion (no more OOM at 32 slabs) - Fix chunk initialization bug (bitmap=0x00000001 after expansion) Files: core/hakmem_tiny_superslab.c/h, core/superslab/superslab_types.h Result: 50% → 95% stability (19/20 4T success) Phase 2b: TLS Cache Adaptive Sizing - Dynamic capacity: 16-2048 slots based on usage - High-water mark tracking + exponential growth/shrink - Expected: +3-10% performance, -30-50% memory Files: core/tiny_adaptive_sizing.c/h (new) Phase 2c: BigCache Dynamic Hash Table - Migrate from fixed 256×8 array to dynamic hash table - Auto-resize: 256 → 512 → 1024 → 65,536 buckets - Improved hash function (FNV-1a) + collision chaining Files: core/hakmem_bigcache.c/h Expected: +10-20% cache hit rate Design Flaws Analysis: - Identified 6 components with fixed-capacity bottlenecks - SuperSlab (CRITICAL), TLS Cache (HIGH), BigCache/L2.5 (MEDIUM) - Report: DESIGN_FLAWS_ANALYSIS.md (11 chapters) Documentation: - 13 comprehensive reports (PHASE*.md, DESIGN_FLAWS*.md) - Implementation guides, test results, production readiness - Bug fix reports, root cause analysis Build System: - Makefile: phase7 targets, PREWARM_TLS flag - Auto dependency generation (-MMD -MP) for .inc files Known Issues: - 4T stability: 19/20 (95%) - investigating 1 failure for 100% - L2.5 Pool dynamic sharding: design only (needs 2-3 days integration) 🤖 Generated with Claude Code (https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
11 KiB
Phase 2b: TLS Cache Adaptive Sizing
Date: 2025-11-08 Priority: 🟡 HIGH - Performance optimization Estimated Effort: 3-5 days Status: Ready for implementation Depends on: Phase 2a (not blocking, can run in parallel)
Executive Summary
Problem: TLS Cache has fixed capacity (256-768 slots) → Cannot adapt to workload Solution: Implement adaptive sizing with high-water mark tracking Expected Result: Hot classes get more cache → Better hit rate → Higher throughput
Current Architecture (INEFFICIENT)
Fixed Capacity
// core/hakmem_tiny.c or similar
#define TLS_SLL_CAP_DEFAULT 256
static __thread int g_tls_sll_count[TINY_NUM_CLASSES];
static __thread void* g_tls_sll_head[TINY_NUM_CLASSES];
// Fixed capacity for all classes!
// Hot class (e.g., class 4 in Larson) → cache thrashes
// Cold class (e.g., class 0 rarely used) → wastes memory
Why This is Inefficient
Scenario 1: Hot class (class 4 - 128B allocations)
Larson 4T: 4000+ concurrent 128B allocations
TLS cache capacity: 256 slots
Hit rate: ~6% (256/4000)
Result: Constant refill overhead → poor performance
Scenario 2: Cold class (class 0 - 16B allocations)
Usage: ~10 allocations per minute
TLS cache capacity: 256 slots
Waste: 246 slots × 16B = 3936B per thread wasted
Proposed Architecture (ADAPTIVE)
High-Water Mark Tracking
typedef struct TLSCacheStats {
size_t capacity; // Current capacity
size_t high_water_mark; // Peak usage in recent window
size_t refill_count; // Number of refills in recent window
uint64_t last_adapt_time; // Timestamp of last adaptation
} TLSCacheStats;
static __thread TLSCacheStats g_tls_cache_stats[TINY_NUM_CLASSES];
Adaptive Sizing Logic
// Periodically adapt cache size based on usage
void adapt_tls_cache_size(int class_idx) {
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
// Update high-water mark
if (g_tls_sll_count[class_idx] > stats->high_water_mark) {
stats->high_water_mark = g_tls_sll_count[class_idx];
}
// Adapt every N refills or M seconds
uint64_t now = get_timestamp_ns();
if (stats->refill_count < ADAPT_REFILL_THRESHOLD &&
(now - stats->last_adapt_time) < ADAPT_TIME_THRESHOLD_NS) {
return; // Too soon to adapt
}
// Decide: grow, shrink, or keep
if (stats->high_water_mark > stats->capacity * 0.8) {
// High usage → grow cache (2x)
grow_tls_cache(class_idx);
} else if (stats->high_water_mark < stats->capacity * 0.2) {
// Low usage → shrink cache (0.5x)
shrink_tls_cache(class_idx);
}
// Reset stats for next window
stats->high_water_mark = g_tls_sll_count[class_idx];
stats->refill_count = 0;
stats->last_adapt_time = now;
}
Implementation Tasks
Task 1: Add Adaptive Sizing Stats (1-2 hours)
File: core/hakmem_tiny.c or TLS cache code
// Per-class TLS cache statistics
typedef struct TLSCacheStats {
size_t capacity; // Current capacity
size_t high_water_mark; // Peak usage in recent window
size_t refill_count; // Refills since last adapt
size_t shrink_count; // Shrinks (for debugging)
size_t grow_count; // Grows (for debugging)
uint64_t last_adapt_time; // Timestamp of last adaptation
} TLSCacheStats;
static __thread TLSCacheStats g_tls_cache_stats[TINY_NUM_CLASSES];
// Configuration
#define TLS_CACHE_MIN_CAPACITY 16 // Minimum cache size
#define TLS_CACHE_MAX_CAPACITY 2048 // Maximum cache size
#define TLS_CACHE_INITIAL_CAPACITY 64 // Initial size (reduced from 256)
#define ADAPT_REFILL_THRESHOLD 10 // Adapt every 10 refills
#define ADAPT_TIME_THRESHOLD_NS (1000000000ULL) // Or every 1 second
// Growth thresholds
#define GROW_THRESHOLD 0.8 // Grow if usage > 80% of capacity
#define SHRINK_THRESHOLD 0.2 // Shrink if usage < 20% of capacity
Task 2: Implement Grow/Shrink Functions (2-3 hours)
File: core/hakmem_tiny.c
// Grow TLS cache capacity (2x)
static void grow_tls_cache(int class_idx) {
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
size_t new_capacity = stats->capacity * 2;
if (new_capacity > TLS_CACHE_MAX_CAPACITY) {
new_capacity = TLS_CACHE_MAX_CAPACITY;
}
if (new_capacity == stats->capacity) {
return; // Already at max
}
stats->capacity = new_capacity;
stats->grow_count++;
fprintf(stderr, "[TLS_CACHE] Grow class %d: %zu → %zu slots (grow_count=%zu)\n",
class_idx, stats->capacity / 2, stats->capacity, stats->grow_count);
}
// Shrink TLS cache capacity (0.5x)
static void shrink_tls_cache(int class_idx) {
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
size_t new_capacity = stats->capacity / 2;
if (new_capacity < TLS_CACHE_MIN_CAPACITY) {
new_capacity = TLS_CACHE_MIN_CAPACITY;
}
if (new_capacity == stats->capacity) {
return; // Already at min
}
// Evict excess blocks if current count > new_capacity
if (g_tls_sll_count[class_idx] > new_capacity) {
// Drain excess blocks back to SuperSlab
int excess = g_tls_sll_count[class_idx] - new_capacity;
drain_excess_blocks(class_idx, excess);
}
stats->capacity = new_capacity;
stats->shrink_count++;
fprintf(stderr, "[TLS_CACHE] Shrink class %d: %zu → %zu slots (shrink_count=%zu)\n",
class_idx, stats->capacity * 2, stats->capacity, stats->shrink_count);
}
// Drain excess blocks back to SuperSlab
static void drain_excess_blocks(int class_idx, int count) {
void** head = &g_tls_sll_head[class_idx];
int drained = 0;
while (*head && drained < count) {
void* block = *head;
*head = *(void**)block; // Pop from TLS list
// Return to SuperSlab (or freelist)
return_block_to_superslab(block, class_idx);
drained++;
g_tls_sll_count[class_idx]--;
}
fprintf(stderr, "[TLS_CACHE] Drained %d excess blocks from class %d\n", drained, class_idx);
}
Task 3: Integrate Adaptation into Refill Path (2-3 hours)
File: core/tiny_alloc_fast.inc.h or refill code
static inline int tiny_alloc_fast_refill(int class_idx) {
// ... existing refill logic ...
// Track refill for adaptive sizing
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
stats->refill_count++;
// Update high-water mark
if (g_tls_sll_count[class_idx] > stats->high_water_mark) {
stats->high_water_mark = g_tls_sll_count[class_idx];
}
// Periodically adapt cache size
adapt_tls_cache_size(class_idx);
// ... rest of refill ...
}
Task 4: Implement Adaptation Logic (2-3 hours)
File: core/hakmem_tiny.c
// Adapt TLS cache size based on usage patterns
static void adapt_tls_cache_size(int class_idx) {
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
// Adapt every N refills or M seconds
uint64_t now = get_timestamp_ns();
bool should_adapt = (stats->refill_count >= ADAPT_REFILL_THRESHOLD) ||
((now - stats->last_adapt_time) >= ADAPT_TIME_THRESHOLD_NS);
if (!should_adapt) {
return; // Too soon to adapt
}
// Calculate usage ratio
double usage_ratio = (double)stats->high_water_mark / (double)stats->capacity;
// Decide: grow, shrink, or keep
if (usage_ratio > GROW_THRESHOLD) {
// High usage (>80%) → grow cache
grow_tls_cache(class_idx);
} else if (usage_ratio < SHRINK_THRESHOLD) {
// Low usage (<20%) → shrink cache
shrink_tls_cache(class_idx);
} else {
// Moderate usage (20-80%) → keep current size
fprintf(stderr, "[TLS_CACHE] Keep class %d at %zu slots (usage=%.1f%%)\n",
class_idx, stats->capacity, usage_ratio * 100.0);
}
// Reset stats for next window
stats->high_water_mark = g_tls_sll_count[class_idx];
stats->refill_count = 0;
stats->last_adapt_time = now;
}
// Helper: Get timestamp in nanoseconds
static inline uint64_t get_timestamp_ns(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (uint64_t)ts.tv_sec * 1000000000ULL + (uint64_t)ts.tv_nsec;
}
Task 5: Initialize Adaptive Stats (1 hour)
File: core/hakmem_tiny.c
void hak_tiny_init(void) {
// ... existing init ...
// Initialize TLS cache stats for each class
for (int class_idx = 0; class_idx < TINY_NUM_CLASSES; class_idx++) {
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
stats->capacity = TLS_CACHE_INITIAL_CAPACITY; // Start with 64 slots
stats->high_water_mark = 0;
stats->refill_count = 0;
stats->shrink_count = 0;
stats->grow_count = 0;
stats->last_adapt_time = get_timestamp_ns();
// Initialize TLS cache head/count
g_tls_sll_head[class_idx] = NULL;
g_tls_sll_count[class_idx] = 0;
}
}
Task 6: Add Capacity Enforcement (2-3 hours)
File: core/tiny_alloc_fast.inc.h
static inline int tiny_alloc_fast_refill(int class_idx) {
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
// Don't refill beyond current capacity
int current_count = g_tls_sll_count[class_idx];
int available_slots = stats->capacity - current_count;
if (available_slots <= 0) {
// Cache is full, don't refill
fprintf(stderr, "[TLS_CACHE] Class %d cache full (%d/%zu), skipping refill\n",
class_idx, current_count, stats->capacity);
return -1; // Signal caller to try again or use slow path
}
// Refill only up to capacity
int want_count = HAKMEM_TINY_REFILL_DEFAULT; // e.g., 16
int refill_count = (want_count < available_slots) ? want_count : available_slots;
// ... existing refill logic with refill_count ...
}
Testing Strategy
Test 1: Adaptive Behavior Verification
# Enable debug logging
HAKMEM_LOG=1 ./larson_hakmem 10 8 128 1024 1 12345 4 2>&1 | grep "TLS_CACHE"
# Should see:
# [TLS_CACHE] Grow class 4: 64 → 128 slots (grow_count=1)
# [TLS_CACHE] Grow class 4: 128 → 256 slots (grow_count=2)
# [TLS_CACHE] Grow class 4: 256 → 512 slots (grow_count=3)
# [TLS_CACHE] Keep class 0 at 64 slots (usage=5.2%)
Test 2: Performance Improvement
# Before (fixed capacity)
./larson_hakmem 1 1 128 1024 1 12345 1
# Baseline: 2.71M ops/s
# After (adaptive capacity)
./larson_hakmem 1 1 128 1024 1 12345 1
# Expected: 2.8-3.0M ops/s (+3-10%)
Test 3: Memory Efficiency
# Run with memory profiling
valgrind --tool=massif ./larson_hakmem 1 1 128 1024 1 12345 1
# Compare peak memory usage
# Fixed: 256 slots × 8 classes × 8B = ~16KB per thread
# Adaptive: ~8KB per thread (cold classes shrink to 16 slots)
Success Criteria
✅ Adaptive behavior: Logs show grow/shrink based on usage ✅ Hot class expansion: Class 4 grows to 512+ slots under load ✅ Cold class shrinkage: Class 0 shrinks to 16-32 slots ✅ Performance improvement: +3-10% on Larson benchmark ✅ Memory efficiency: -30-50% TLS cache memory usage
Deliverable
Report file: /mnt/workdisk/public_share/hakmem/PHASE2B_IMPLEMENTATION_REPORT.md
Required sections:
- Adaptive sizing behavior (logs showing grow/shrink)
- Performance comparison (before/after)
- Memory usage comparison (TLS cache overhead)
- Per-class capacity evolution (graph if possible)
- Production readiness (YES/NO verdict)
Let's make TLS cache adaptive! 🎯