Files
hakmem/PHASE4_STEP1_COMPLETE.md
Moe Charm (CI) b51b600e8d Phase 4-Step1: Add PGO workflow automation (+6.25% performance)
Implemented automated Profile-Guided Optimization workflow using Box pattern:

Performance Improvement:
- Baseline:      57.0 M ops/s
- PGO-optimized: 60.6 M ops/s
- Gain: +6.25% (within expected +5-10% range)

Implementation:
1. scripts/box/pgo_tiny_profile_config.sh - 5 representative workloads
2. scripts/box/pgo_tiny_profile_box.sh - Automated profile collection
3. Makefile PGO targets:
   - pgo-tiny-profile: Build instrumented binaries
   - pgo-tiny-collect: Collect .gcda profile data
   - pgo-tiny-build:   Build optimized binaries
   - pgo-tiny-full:    Complete workflow (profile → collect → build → test)
4. Makefile help target: Added PGO instructions for discoverability

Design:
- Box化: Single responsibility, clear contracts
- Deterministic: Fixed seeds (42) for reproducibility
- Safe: Validation, error detection, timeout protection (30s/workload)
- Observable: Progress reporting, .gcda verification (33 files generated)

Workload Coverage:
- Random mixed: 3 working set sizes (128/256/512 slots)
- Tiny hot: 2 size classes (16B/64B)
- Total: 5 workloads covering hot/cold paths

Documentation:
- PHASE4_STEP1_COMPLETE.md - Completion report
- CURRENT_TASK.md - Phase 4 roadmap (Step 1 complete ✓)
- docs/design/PHASE4_TINY_FRONT_BOX_DESIGN.md - Complete Phase 4 design

Next: Phase 4-Step2 (Hot/Cold Path Box, target +10-15%)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-29 11:28:38 +09:00

260 lines
7.5 KiB
Markdown

# Phase 4-Step1: PGO Workflow - COMPLETE ✓
**Date**: 2025-11-29
**Status**: ✅ Complete
**Performance Gain**: +6.25% (57.0 → 60.6 M ops/s)
---
## Summary
Phase 4-Step1 implemented a fully automated PGO (Profile-Guided Optimization) workflow for the HAKMEM Tiny Front using the Box pattern. The implementation achieved a **+6.25% performance improvement** (within the expected +5-10% range) with zero code changes - pure compiler optimization.
---
## Implementation
### Box 1: PGO Profile Collection Box
**Purpose**: Automated, reproducible profile data collection
**Contract**: Execute representative workloads → Generate .gcda files
**Components**:
1. `scripts/box/pgo_tiny_profile_config.sh` - Workload configuration
2. `scripts/box/pgo_tiny_profile_box.sh` - Profile collection automation
3. Makefile PGO targets - Workflow orchestration
**Design Principles**:
-**Deterministic**: Fixed seeds (42) for reproducibility
-**Representative**: 5 workloads covering diverse allocation patterns
-**Automated**: Single command (`make pgo-tiny-full`) for complete workflow
-**Safe**: Validation checks, error detection, timeout protection
-**Observable**: Clear progress reporting, .gcda file verification
---
## Workload Design
The PGO profile collection uses **5 representative workloads** to capture diverse allocation patterns:
| Workload | Purpose | Key Characteristics |
|----------|---------|---------------------|
| `bench_random_mixed 5M 256 42` | Common case | Medium working set, balanced cache pressure |
| `bench_random_mixed 5M 128 42` | Hot path bias | Smaller working set, higher TLS cache hit rate |
| `bench_random_mixed 5M 512 42` | Cold path bias | Larger working set, more SuperSlab allocations |
| `bench_tiny_hot 16 100 60000` | Class 0 intensive | Smallest size class (16B) |
| `bench_tiny_hot 64 100 60000` | Class 3 intensive | Common small object size (64B) |
**Coverage**: The workloads exercise:
- Hot TLS SLL pop path (high-frequency allocations)
- Cold refill path (SuperSlab allocations)
- Multiple size classes (0, 3, and mixed)
- Varied cache pressure scenarios
---
## Makefile Targets
```makefile
# Step 1: Build instrumented binaries (-fprofile-generate)
make pgo-tiny-profile
# Step 2: Collect profile data (run workloads → .gcda files)
make pgo-tiny-collect
# Step 3: Build optimized binaries (-fprofile-use)
make pgo-tiny-build
# Full workflow: profile → collect → build → test
make pgo-tiny-full
```
**Default Goal**: The Makefile help target now includes PGO instructions (lines 18-23)
---
## Performance Results
### Baseline (No PGO)
```
Run 1: 57.04 M ops/s
Run 2: 57.14 M ops/s
Run 3: 56.95 M ops/s
Average: 57.04 M ops/s
```
### PGO-Optimized
```
Run 1: 60.49 M ops/s
Run 2: 60.68 M ops/s
Run 3: 60.66 M ops/s
Average: 60.61 M ops/s
```
### Improvement
```
Absolute: +3.57 M ops/s
Relative: +6.25%
Expected: +5-10% ✓
```
**Verification**: Latest test (after Makefile fix) confirmed **60.75 M ops/s** - consistent with expected performance.
---
## Technical Details
### Profile Data Collection
The `pgo_tiny_profile_box.sh` script implements a robust collection workflow:
1. **Binary Validation**
- Checks binaries exist and are executable
- Auto-fixes permissions if needed
2. **Profile Cleanup**
- Removes old .gcda files to prevent stale data
- Reports cleanup statistics
3. **Workload Execution**
- Runs each workload with 30s timeout
- Detects timeouts and failures
- Fails fast on errors
4. **Profile Verification**
- Confirms .gcda files were generated
- Reports profile file count and locations
- Detects missing -fprofile-generate flag
**Output**: 33 .gcda files (confirmed in latest run)
### Compiler Flags
```makefile
# Profile Generation (Step 1)
PROFILE_GEN_FLAGS = -fprofile-generate -flto
# Profile Use (Step 3)
PROFILE_USE_FLAGS = -fprofile-use -flto
```
**LTO**: Link-Time Optimization is enabled for both phases to maximize PGO effectiveness.
---
## Workflow Fix (2025-11-29)
**Issue**: Initial implementation had `pgo-tiny-build` calling the profile collection script, causing:
- Duplicate script execution
- Unclear separation of concerns
- Skipped `pgo-tiny-collect` in dependency chain
**Fix**: Cleaned up the workflow:
```makefile
# Before (broken):
pgo-tiny-full: pgo-tiny-profile pgo-tiny-build # Missing collect!
# After (correct):
pgo-tiny-full: pgo-tiny-profile pgo-tiny-collect pgo-tiny-build
```
**Result**: Each target now has a single responsibility:
- `pgo-tiny-profile`: Build only
- `pgo-tiny-collect`: Collect only
- `pgo-tiny-build`: Build only
- `pgo-tiny-full`: Orchestrate all steps
---
## Help Target Update
The Makefile `help` target (lines 8-37) now includes:
```
Benchmarking (PGO-optimized, +6% faster):
make pgo-tiny-full - Full PGO workflow (~5-10 min)
= Profile + Optimize + Test
make pgo-tiny-profile - Step 1: Build profile binaries
make pgo-tiny-collect - Step 2: Collect profile data
make pgo-tiny-build - Step 3: Build optimized
Phase 4 Performance:
Baseline: 57.0 M ops/s
PGO-optimized: 60.6 M ops/s (+6.25%)
TIP: For best performance, use 'make pgo-tiny-full'
```
This ensures developers won't forget how to use PGO builds.
---
## Artifacts
### New Files
- `scripts/box/pgo_tiny_profile_config.sh` - Workload definitions
- `scripts/box/pgo_tiny_profile_box.sh` - Collection automation
- `PHASE4_STEP1_COMPLETE.md` - This completion report
### Modified Files
- `Makefile` (lines 8-37) - Help target with PGO instructions
- `Makefile` (lines 1305-1356) - PGO workflow targets
### Documentation
- `CURRENT_TASK.md` - Phase 4 roadmap
- `docs/design/PHASE4_TINY_FRONT_BOX_DESIGN.md` - Complete Box design
---
## Box Pattern Compliance
**Single Responsibility**: Profile collection is a separate Box
**Clear Contract**: Workloads → .gcda files → Optimized binaries
**Observable**: Progress reporting, error detection, summary statistics
**Safe**: Validation, timeouts, fail-fast on errors
**Testable**: Deterministic seeds for reproducibility
---
## Next Steps
### Phase 4-Step2: Hot/Cold Path Box
- **Target**: +10-15% improvement (60.6 → 70.0 M ops/s)
- **Approach**: Separate hot (inline, likely) and cold (noinline, unlikely) paths
- **Design**: Already specified in `PHASE4_TINY_FRONT_BOX_DESIGN.md`
### Phase 4-Step3: Front Config Box
- **Target**: +5-8% improvement (70.0 → 76.0 M ops/s)
- **Approach**: Compile-time config optimization
- **Design**: Already specified in design doc
**Overall Phase 4 Target**: 73-83 M ops/s (vs current 60.6 M ops/s)
---
## Lessons Learned
1. **PGO is high ROI**: +6.25% with zero code changes, ~30 minutes of work
2. **Representative workloads matter**: 5 diverse workloads > 1 simple workload
3. **Automation is critical**: Manual PGO workflows are error-prone
4. **Box pattern scales**: Profile collection fits the Box pattern naturally
5. **Help targets prevent forgetting**: Make workflows discoverable
---
## Conclusion
Phase 4-Step1 successfully implemented PGO optimization using the Box pattern, achieving **+6.25% performance improvement** (57.0 → 60.6 M ops/s) with:
- ✅ Fully automated workflow (`make pgo-tiny-full`)
- ✅ Reproducible results (deterministic seeds)
- ✅ Clear documentation (help target, design doc)
- ✅ Robust error handling (validation, timeouts)
- ✅ Within expected range (+5-10%)
**Status**: Ready to proceed to Phase 4-Step2 (Hot/Cold Path Box)
---
**Signed**: Claude (2025-11-29)
**Commit**: TBD (pending git commit)