Major Features: - Debug counter infrastructure for Refill Stage tracking - Free Pipeline counters (ss_local, ss_remote, tls_sll) - Diagnostic counters for early return analysis - Unified larson.sh benchmark runner with profiles - Phase 6-3 regression analysis documentation Bug Fixes: - Fix SuperSlab disabled by default (HAKMEM_TINY_USE_SUPERSLAB) - Fix profile variable naming consistency - Add .gitignore patterns for large files Performance: - Phase 6-3: 4.79 M ops/s (has OOM risk) - With SuperSlab: 3.13 M ops/s (+19% improvement) This is a clean repository without large log files. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
10 KiB
ChatGPT Pro Feedback - ACE Integration for hakmem
Date: 2025-10-21 Source: ChatGPT Pro analysis of hakmem allocator + ACE (Agentic Context Engineering)
🎯 Executive Summary
ChatGPT Pro provided actionable feedback for improving hakmem allocator from silver medal (2nd place) to gold medal (1st place) using ACE principles.
Key Recommendations
- ELO-based Strategy Selection (highest impact)
- ABI Hardening (production readiness)
- madvise Batching (TLB optimization)
- Telemetry Optimization (<2% overhead SLO)
- Expanded Test Suite (10 new scenarios)
📊 ACE (Agentic Context Engineering) Overview
What is ACE?
Paper: Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Core Principles:
- Delta Updates: Incremental changes to avoid context collapse
- Three Roles: Generator → Reflector → Curator
- Results: +10.6% (Agent tasks), +8.6% (Finance), -87% adaptation latency
Why it matters for hakmem:
- Similar to UCB1 bandit learning (already implemented)
- Can evolve allocation strategies based on real workload feedback
- Proven to work with online adaptation (AppWorld benchmark)
🔧 Immediate Actions (Priority Order)
Priority 1: ELO-Based Strategy Selection (HIGHEST IMPACT)
Current: UCB1 with 6 discrete mmap threshold steps Proposed: ELO rating system for K candidate strategies
Implementation:
// hakmem_elo.h
typedef struct {
int strategy_id;
double elo_rating; // Start at 1500
uint64_t wins;
uint64_t losses;
uint64_t draws;
} StrategyCandidate;
// After each allocation batch:
// 1. Select 2 candidates (epsilon-greedy)
// 2. Run N samples with each
// 3. Compare CPU time + page faults + bytes_live
// 4. Update ELO ratings
// 5. Top-M strategies survive
Why it beats UCB1:
- UCB1 assumes independent arms
- ELO handles transitivity (if A>B and B>C, then A>C)
- Better for multi-objective scoring (CPU + memory + faults)
Expected Gain: +10-20% on VM scenario (close gap with mimalloc)
Priority 2: ABI Version Negotiation (PRODUCTION READINESS)
Current: No ABI versioning Proposed: Version negotiation + extensible structs
Implementation:
// hakmem.h
#define HAKMEM_ABI_VER 1
typedef struct {
uint32_t magic; // 0x48414B4D
uint32_t abi_version; // HAKMEM_ABI_VER
size_t struct_size; // sizeof(AllocHeader)
uint8_t reserved[16]; // Future expansion
} AllocHeader;
// Version check in hak_init()
int hak_check_abi_version(uint32_t client_ver) {
if (client_ver != HAKMEM_ABI_VER) {
fprintf(stderr, "ABI mismatch: %d vs %d\n", client_ver, HAKMEM_ABI_VER);
return -1;
}
return 0;
}
Why it matters:
- Future-proof for field additions
- Safe multi-language bindings (Rust/Python/Node)
- Production requirement
Expected Gain: 0% performance, 100% maintainability
Priority 3: madvise Batching (TLB OPTIMIZATION)
Current: Per-allocation madvise calls
Proposed: Batch madvise(DONTNEED) for freed blocks
Implementation:
// hakmem_batch.c
#define BATCH_THRESHOLD (4 * 1024 * 1024) // 4MB
typedef struct {
void* blocks[256];
size_t sizes[256];
int count;
size_t total_bytes;
} DontneedBatch;
static DontneedBatch g_batch;
void hak_free_at(void* ptr, size_t size, hak_callsite_t site) {
// ... existing logic
// Add to batch
if (size >= 64 * 1024) { // Only batch large blocks
g_batch.blocks[g_batch.count] = ptr;
g_batch.sizes[g_batch.count] = size;
g_batch.count++;
g_batch.total_bytes += size;
// Flush batch if threshold reached
if (g_batch.total_bytes >= BATCH_THRESHOLD) {
flush_dontneed_batch(&g_batch);
}
}
}
static void flush_dontneed_batch(DontneedBatch* batch) {
for (int i = 0; i < batch->count; i++) {
madvise(batch->blocks[i], batch->sizes[i], MADV_DONTNEED);
}
batch->count = 0;
batch->total_bytes = 0;
}
Why it matters:
- Reduces TLB flush overhead (major factor in VM scenario)
- mimalloc does this (one reason it's 2× faster)
Expected Gain: +20-30% on VM scenario
Priority 4: Telemetry Optimization (<2% OVERHEAD)
Current: Full tracking on every allocation Proposed: Adaptive sampling + P50/P95 sketches
Implementation:
// hakmem_telemetry.h
typedef struct {
uint64_t p50_size; // Median size
uint64_t p95_size; // 95th percentile
uint64_t count;
uint64_t sample_rate; // 1/N sampling
} SizeTelemetry;
// Adaptive sampling to keep overhead <2%
static void update_telemetry(uintptr_t site, size_t size) {
SiteTelemetry* telem = &g_telemetry[hash_site(site)];
// Sample only 1/N allocations
if (fast_random() % telem->sample_rate != 0) {
return; // Skip this sample
}
// Update P50/P95 using TDigest (lightweight sketch)
tdigest_add(&telem->digest, size);
// Auto-adjust sample rate to keep overhead <2%
if (telem->overhead_ns > TARGET_OVERHEAD) {
telem->sample_rate *= 2; // Sample less frequently
}
}
Why it matters:
- Current overhead likely >5% on hot paths
- <2% is production-acceptable
Expected Gain: +3-5% across all scenarios
Priority 5: Expanded Test Suite (COVERAGE)
Current: 4 scenarios (JSON/MIR/VM/MIXED) Proposed: 10 additional scenarios from ChatGPT
New Scenarios:
- Multi-threaded: 8 threads × 1000 allocs (contention test)
- Fragmentation: Alternating alloc/free (worst-case)
- Long-running: 1M allocations over 60s (stability)
- Size distribution: Realistic web server (80% <1KB, 15% 1-64KB, 5% >64KB)
- Lifetime distribution: 70% short-lived, 25% medium, 5% permanent
- Sequential access: mmap → sequential read (madvise test)
- Random access: mmap → random read (madvise test)
- Realloc-heavy: 50% realloc operations (growth/shrink)
- Zero-sized: Edge cases (0-byte allocs, NULL free)
- Alignment: Strict alignment requirements (64B, 4KB)
Implementation:
# bench_extended.sh
SCENARIOS=(
"multithread:8:1000"
"fragmentation:mixed:10000"
"longrun:60s:1000000"
# ... etc
)
for scenario in "${SCENARIOS[@]}"; do
IFS=':' read -r name threads iters <<< "$scenario"
./bench_allocators_hakmem --scenario "$name" --threads "$threads" --iterations "$iters"
done
Why it matters:
- Current 4 scenarios are synthetic
- Real-world workloads are more complex
- Identify hidden performance cliffs
Expected Gain: Uncover 2-3 optimization opportunities
🔬 Technical Deep Dive: ELO vs UCB1
Why ELO is Better for hakmem
| Aspect | UCB1 | ELO |
|---|---|---|
| Assumes | Independent arms | Pairwise comparisons |
| Handles | Single objective | Multi-objective (composite score) |
| Transitivity | No | Yes (if A>B, B>C → A>C) |
| Convergence | Fast | Slower but more robust |
| Best for | Simple bandits | Complex strategy evolution |
Composite Score Function
double compute_score(AllocationStats* stats) {
// Normalize each metric to [0, 1]
double cpu_score = 1.0 - (stats->cpu_ns / MAX_CPU_NS);
double pf_score = 1.0 - (stats->page_faults / MAX_PAGE_FAULTS);
double mem_score = 1.0 - (stats->bytes_live / MAX_BYTES_LIVE);
// Weighted combination
return 0.4 * cpu_score + 0.3 * pf_score + 0.3 * mem_score;
}
ELO Update
void update_elo(StrategyCandidate* a, StrategyCandidate* b, double score_diff) {
double expected_a = 1.0 / (1.0 + pow(10, (b->elo_rating - a->elo_rating) / 400.0));
double actual_a = (score_diff > 0) ? 1.0 : (score_diff < 0) ? 0.0 : 0.5;
a->elo_rating += K_FACTOR * (actual_a - expected_a);
b->elo_rating += K_FACTOR * ((1.0 - actual_a) - (1.0 - expected_a));
}
📈 Expected Performance Gains
Conservative Estimates
| Optimization | JSON | MIR | VM | MIXED |
|---|---|---|---|---|
| Current | 272 ns | 1578 ns | 36647 ns | 739 ns |
| +ELO | 265 ns | 1450 ns | 30000 ns | 680 ns |
| +madvise batch | 265 ns | 1450 ns | 25000 ns | 680 ns |
| +Telemetry | 255 ns | 1400 ns | 24000 ns | 650 ns |
| Projected | 255 ns | 1400 ns | 24000 ns | 650 ns |
Gap Closure vs mimalloc
| Scenario | Current Gap | Projected Gap | Status |
|---|---|---|---|
| JSON | +7.3% | +0.6% | ✅ Close |
| MIR | +27.9% | +13.4% | ⚠️ Better |
| VM | +106.8% | +35.4% | ⚡ Significant! |
| MIXED | +44.4% | +27.0% | ⚡ Significant! |
Conclusion: With these optimizations, hakmem can close the gap from 2× to 1.35× on VM and become competitive for gold medal!
🎯 Implementation Roadmap
Week 1: ELO Framework (Highest ROI)
hakmem_elo.h- ELO rating system- Candidate strategy generation
- Pairwise comparison harness
- Integration with
hak_evolve_playbook()
Week 2: madvise Batching (Quick Win)
hakmem_batch.c- Batching logic- Threshold tuning (4MB default)
- VM scenario re-benchmark
Week 3: Telemetry Optimization
- Adaptive sampling implementation
- TDigest for P50/P95
- Overhead profiling (<2% SLO)
Week 4: ABI Hardening + Tests
- Version negotiation
- Extended test suite (10 scenarios)
- Multi-threaded tests
- Production readiness checklist
📚 References
- ACE Paper: Agentic Context Engineering
- Dynamic Cheatsheet: Test-Time Learning
- AppWorld: 9 Apps / 457 API Benchmark
- ACE OSS: GitHub Reproduction Framework
💡 Key Takeaways
- ELO > UCB1 for multi-objective strategy selection
- Batching madvise can close 50% of the gap with mimalloc
- <2% telemetry overhead is critical for production
- Extended test suite will uncover hidden optimizations
- ABI versioning is a must for production readiness
Next Step: Implement ELO framework (Week 1) and re-benchmark!
Generated: 2025-10-21 (Based on ChatGPT Pro feedback) Status: Ready for implementation Expected Outcome: Close gap to 1.35× vs mimalloc, competitive for gold medal 🥇