Phase 1 完了:環境変数整理 + fprintf デバッグガード ENV変数削除(BG/HotMag系): - core/hakmem_tiny_init.inc: HotMag ENV 削除 (~131 lines) - core/hakmem_tiny_bg_spill.c: BG spill ENV 削除 - core/tiny_refill.h: BG remote 固定値化 - core/hakmem_tiny_slow.inc: BG refs 削除 fprintf Debug Guards (#if !HAKMEM_BUILD_RELEASE): - core/hakmem_shared_pool.c: Lock stats (~18 fprintf) - core/page_arena.c: Init/Shutdown/Stats (~27 fprintf) - core/hakmem.c: SIGSEGV init message ドキュメント整理: - 328 markdown files 削除(旧レポート・重複docs) 性能確認: - Larson: 52.35M ops/s (前回52.8M、安定動作✅) - ENV整理による機能影響なし - Debug出力は一部残存(次phase で対応) 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
5.5 KiB
Pool Hot Path Bottleneck Analysis
Executive Summary
Root Cause: Pool allocator is 100x slower than expected due to pthread_mutex_lock in the hot path (line 267 of core/box/pool_core_api.inc.h).
Current Performance: 434,611 ops/s Expected Performance: 50-80M ops/s Gap: ~100x slower
Critical Finding: Mutex in Hot Path
The Smoking Gun (Line 267)
// core/box/pool_core_api.inc.h:267
pthread_mutex_t* lock = &g_pool.freelist_locks[class_idx][shard_idx].m;
pthread_mutex_lock(lock); // 💀 FULL KERNEL MUTEX IN HOT PATH
Impact: Every allocation that misses ALL TLS caches falls into this mutex lock:
- Mutex overhead: 100-500 cycles (kernel syscall)
- Contention overhead: 1000+ cycles under MT load
- Cache invalidation: 50-100 cycles from cache line bouncing
Detailed Bottleneck Breakdown
Pool Allocator Hot Path (hak_pool_try_alloc)
Line 234-236: TC drain check // ~20-30 cycles
Line 236: TLS ring check // ~10-20 cycles
Line 237: TLS LIFO check // ~10-20 cycles
Line 240-256: Trylock probe loop // ~100-300 cycles (3 attempts!)
Line 258-261: Active page checks // ~30-50 cycles (3 pages!)
Line 267: pthread_mutex_lock // 💀 100-500+ cycles
Line 280: refill_freelist // ~1000+ cycles (mmap)
Total worst case: 1500-2500 cycles per allocation
Tiny Allocator Hot Path (tiny_alloc_fast)
Line 205: Load TLS head // 1 cycle
Line 206: Check NULL // 1 cycle
Line 238: Update head = *next // 2-3 cycles
Return // 1 cycle
Total: 5-6 cycles (300x faster!)
Performance Analysis
Cycle Cost Breakdown
| Operation | Pool (cycles) | Tiny (cycles) | Ratio |
|---|---|---|---|
| TLS cache check | 60-100 | 2-3 | 30x slower |
| Trylock probes | 100-300 | 0 | ∞ |
| Mutex lock | 100-500 | 0 | ∞ |
| Atomic operations | 50-100 | 0 | ∞ |
| Random generation | 10-20 | 0 | ∞ |
| Total Hot Path | 320-1020 | 5-6 | 64-170x slower |
Why Tiny is Fast
- Single TLS freelist: Direct pointer pop (3-4 instructions)
- No locks: Pure TLS, zero synchronization
- No atomics: Thread-local only
- Simple refill: Batch from SuperSlab when empty
Why Pool is Slow
- Multiple cache layers: Ring + LIFO + Active pages (complex checks)
- Trylock probes: Up to 3 mutex attempts before main lock
- Full mutex lock: Kernel syscall in hot path
- Atomic remote lists: Memory barriers and cache invalidation
- Per-allocation RNG: Extra cycles for sampling
Root Causes
1. Over-Engineered Architecture
Pool has 5 layers of caching before hitting the mutex:
- TC (Thread Cache) drain
- TLS ring
- TLS LIFO
- Active pages (3 of them!)
- Trylock probes
Each layer adds branches and cycles, yet still falls back to mutex!
2. Mutex-Protected Freelist
The core freelist is protected by 64 mutexes (7 classes × 8 shards + extra), but this still causes massive contention under MT load.
3. Complex Shard Selection
// Line 238-239
int shard_idx = hak_pool_get_shard_index(site_id);
int s0 = choose_nonempty_shard(class_idx, shard_idx);
Requires hash computation and nonempty mask checking.
Proposed Fix: Lock-Free Pool Allocator
Solution 1: Copy Tiny's Approach (Recommended)
Effort: 4-6 hours Expected Performance: 40-60M ops/s
Replace entire Pool hot path with Tiny-style TLS freelist:
void* hak_pool_try_alloc_fast(size_t size, uintptr_t site_id) {
int class_idx = hak_pool_get_class_index(size);
// Simple TLS freelist (like Tiny)
void* head = g_tls_pool_head[class_idx];
if (head) {
g_tls_pool_head[class_idx] = *(void**)head;
return (char*)head + HEADER_SIZE;
}
// Refill from backend (batch, no lock)
return pool_refill_and_alloc(class_idx);
}
Solution 2: Remove Mutex, Use CAS
Effort: 8-12 hours Expected Performance: 20-30M ops/s
Replace mutex with lock-free CAS operations:
// Instead of pthread_mutex_lock
PoolBlock* old_head;
do {
old_head = atomic_load(&g_pool.freelist[class_idx][shard_idx]);
if (!old_head) break;
} while (!atomic_compare_exchange_weak(&g_pool.freelist[class_idx][shard_idx],
&old_head, old_head->next));
Solution 3: Increase TLS Cache Hit Rate
Effort: 2-3 hours Expected Performance: 5-10M ops/s (partial improvement)
- Increase POOL_L2_RING_CAP from 64 to 256
- Pre-warm TLS caches at init (like Tiny Phase 7)
- Batch refill 64 blocks at once
Implementation Plan
Quick Win (2 hours)
- Increase
POOL_L2_RING_CAPto 256 - Add pre-warming in
hak_pool_init() - Test performance
Full Fix (6 hours)
- Create
pool_fast_path.inc.h(copy from tiny_alloc_fast.inc.h) - Replace
hak_pool_try_allocwith simple TLS freelist - Implement batch refill without locks
- Add feature flag for rollback safety
- Test MT performance
Expected Results
With proposed fix (Solution 1):
- Current: 434,611 ops/s
- Expected: 40-60M ops/s
- Improvement: 92-138x faster
- vs System: Should achieve 70-90% of System malloc
Files to Modify
core/box/pool_core_api.inc.h: Replace lines 229-286core/hakmem_pool.h: Add TLS freelist declarations- Create
core/pool_fast_path.inc.h: New fast path implementation
Success Metrics
✅ Pool allocation hot path < 20 cycles ✅ No mutex locks in common case ✅ TLS hit rate > 95% ✅ Performance > 40M ops/s for 8-32KB allocations ✅ MT scaling without contention