Files
hakmem/CURRENT_TASK.md

7.0 KiB

Current Task: Phase 7 Complete - Next Steps

Date: 2025-11-29 Status: Phase 7 COMPLETE (Step 1-2) Achievement: Tiny Front Hot Path Unification (+54.2% improvement!)


Phase 7 Complete!

Result: Tiny Front Hot Path Unification COMPLETE (Step 1-2) Performance: 52.3M → 80.6M ops/s (+54.2% improvement, +28.3M ops/s) Duration: <1 day (extremely quick win!)

Completed Steps:

  • Step 1: Branch hint reversal (0→1) - +54.2% improvement
  • Step 2: Compile-time unified gate (PGO mode) - Code quality improvement

Key Discovery (from ChatGPT + Task agent analysis):

  • Unified fast path existed but was marked UNLIKELY (__builtin_expect(..., 0))
  • Compiler optimized for legacy path, not unified cache path
  • malloc/free consumed 43% CPU due to branch misprediction
  • Simply reversing hint: +54.2% improvement from 2 lines changed!

Performance Journey

Phase-by-Phase Progress

Phase 3 (mincore removal):     56.8 M ops/s
Phase 4 (Hot/Cold Box):         57.2 M ops/s (+0.7%)
Phase 5 (Mid MT fix):           52.3 M ops/s (-8.6% regression)
Phase 6 (Lock-free Mid MT):     42.1 M ops/s (Mid MT: +2.65%)
Phase 7 (Unified front):        80.6 M ops/s (+54.2%!) ⭐

Total improvement: +41.9% (56.8M → 80.6M) from Phase 3

Benchmark Results Summary

bench_random_mixed (16B-1KB, Tiny workload, ws=256):

Phase 7-Step1 (branch hint):    80.6 M ops/s (+54.2%)
Phase 7-Step2 (PGO mode):       80.3 M ops/s (-0.37%, noise)

bench_mid_mt_gap (1KB-8KB, Mid MT workload, ws=256):

After Phase 6-B:    42.09 M ops/s (1.57x vs system malloc)

Technical Details

What Changed (Phase 7-Step1)

File: core/box/hak_wrappers.inc.h Lines: 137 (malloc), 190 (free)

// Before (Phase 26):
if (__builtin_expect(TINY_FRONT_UNIFIED_GATE_ENABLED, 0)) {  // UNLIKELY
    // Unified fast path...
}

// After (Phase 7-Step1):
if (__builtin_expect(TINY_FRONT_UNIFIED_GATE_ENABLED, 1)) {  // LIKELY
    // Unified fast path...
}

Why This Works

  1. Branch Prediction: CPU now expects unified path (not legacy path)
  2. Cache Locality: Unified path stays hot in instruction cache
  3. Code Layout: Compiler places unified path inline (legacy path cold)
  4. perf Data: malloc/free consumed 43% CPU → optimized to hot path

Phase 7-Step2 (PGO Mode)

File: Makefile Line: 606

# Added -DHAKMEM_TINY_FRONT_PGO=1 for bench builds
bench_random_mixed_hakmem.o: bench_random_mixed.c hakmem.h
	$(CC) $(CFLAGS) -DUSE_HAKMEM -DHAKMEM_TINY_FRONT_PGO=1 -c -o $@ $<

Effect: TINY_FRONT_UNIFIED_GATE_ENABLED = 1 (compile-time constant)

  • Enables dead code elimination: if (1) { ... } → always taken
  • No performance change (Step 1 already optimized path)
  • Code quality improvement (foundation for Step 3-7)

Next Phase Options (from Task Agent Plan)

Option A: Continue Phase 7 (Steps 3-7) 📦

Goal: Remove legacy layers (FastCache/SFC/HeapV2/TLS SLL) Expected: Additional +5-10% via dead code elimination Duration: 2-3 days (systematic removal) Risk: Medium (might break backward compatibility)

Remaining Steps (from Task agent):

  • Step 3: Skip legacy layers in hak_alloc_at (~15 lines)
  • Step 4: Eliminate dead code in tiny_alloc_fast.inc.h (~20 lines)
  • Step 5: Simplify free path in hak_wrappers.inc.h (~15 lines)
  • Step 6: Update unified cache refill (~10 lines)
  • Step 7: Add compile-time verification (~5 lines)

Total: ~65 lines of changes (additional)

Option B: Investigate Phase 5 Regression 🔍

Goal: Understand -8.6% regression (57.2M → 52.3M before Phase 7) Note: Now irrelevant (Phase 7 exceeded Phase 4 performance!) Status: RESOLVED by Phase 7 (+54.2% masks the -8.6%)

Option C: PGO Re-enablement 🚀

Goal: Re-enable PGO workflow from Phase 4-Step1 Expected: +6-13% cumulative (on top of 80.6M) Duration: 2-3 days (resolve build issues) Risk: Low (proven pattern)

Phase 4 PGO Results (reference):

  • Before: 57.0 M ops/s
  • After PGO: 60.6 M ops/s (+6.25%)

Current projection:

  • Phase 7 baseline: 80.6 M ops/s
  • With PGO: ~85-91 M ops/s (+6-13%)

Option D: Production Readiness 📊

Goal: Comprehensive benchmark suite, deployment guide Expected: Full performance comparison, stability testing Duration: 3-5 days Risk: Low (documentation + testing)

Option E: Multi-threaded Optimization 🔀

Goal: Optimize for multi-threaded workloads Expected: Improved MT scalability Duration: 4-6 days (need MT benchmarks first) Risk: High (no MT benchmark exists yet)


Recommendation

Top Pick: Option C (PGO Re-enablement) 🚀

Reasoning:

  1. Phase 7 success: 80.6M ops/s is excellent baseline for PGO
  2. Known benefit: +6.25% proven in Phase 4-Step1
  3. Low risk: Just fix build issue (__gcov_merge_time_profile error)
  4. Quick win: 2-3 days vs 2-3 days for Phase 7-Step3+
  5. Cumulative: Would stack with current 80.6M baseline

Expected Result:

Phase 7 baseline:  80.6 M ops/s
With PGO:          ~85-91 M ops/s (+6-13%)

Fallback: If PGO fix takes >3 days, switch to Option A (Phase 7-Step3+)


Second Choice: Option A (Continue Phase 7-Step3+) 📦

Reasoning:

  1. Momentum: Phase 7-Step1+2 already done, Step 3-7 is natural continuation
  2. Clear path: Task agent provided detailed 5-step plan
  3. Predictable: Expected +5-10% additional improvement
  4. Code cleanup: Removes legacy layers (FastCache/SFC/HeapV2)

Expected Result:

Phase 7-Step1+2:   80.6 M ops/s
Phase 7-Step3-7:   ~84-89 M ops/s (+5-10%)

Current Performance Summary

bench_random_mixed (16B-1KB, Tiny workload, ws=256)

Phase 3 (mincore removal):     56.8 M ops/s
Phase 4 (Hot/Cold Box):         57.2 M ops/s (+0.7%)
Phase 5 (Mid MT fix):           52.3 M ops/s (-8.6%)
Phase 7 (Unified front):        80.6 M ops/s (+54.2%!) ⭐

bench_mid_mt_gap (1KB-8KB, Mid MT workload, ws=256)

Before Phase 5 (broken):        1.49 M ops/s
After Phase 5 (fixed):          41.0 M ops/s (+28.9x)
After Phase 6-B (lock-free):    42.09 M ops/s (+2.65%)
vs System malloc:               26.8 M ops/s (1.57x faster)

Overall Status

  • Tiny allocations (16B-1KB): 80.6 M ops/s (excellent, +54.2% vs Phase 5!)
  • Mid MT allocations (1KB-8KB): 42 M ops/s (excellent, 1.57x vs system, lock-free)
  • ⏸️ Large allocations (32KB-2MB): Not benchmarked yet
  • ⏸️ MT workloads: No MT benchmarks yet

Decision Time

Choose your next phase:

  • Option A: Continue Phase 7 (Steps 3-7, legacy removal)
  • Option B: Investigate regression (RESOLVED by Phase 7)
  • Option C: PGO re-enablement (recommended)
  • Option D: Production readiness & benchmarking
  • Option E: Multi-threaded optimization

Or: Celebrate Phase 7 success! 🎉 (+54.2% is huge!)


Updated: 2025-11-29 Phase: 7 COMPLETE (Step 1-2) → 8 PENDING Previous: Phase 6 (Lock-free Mid MT, +2.65%) Achievement: Tiny Front Unification (80.6M ops/s, +54.2% improvement!)