Files
hakorune/src/mir/builder_modularized/expressions.rs

592 lines
25 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*!
* MIR Builder Expressions - Expression AST node conversion
*
* Handles conversion of expression AST nodes to MIR instructions
*/
use super::*;
use crate::ast::{ASTNode, LiteralValue, BinaryOperator};
/// Binary operation type classification
enum BinaryOpType {
Arithmetic(BinaryOp),
Comparison(CompareOp),
}
impl MirBuilder {
/// Build a literal value into MIR
pub(super) fn build_literal(&mut self, literal: LiteralValue) -> Result<ValueId, String> {
let const_value = match literal {
LiteralValue::Integer(n) => ConstValue::Integer(n),
LiteralValue::Float(f) => ConstValue::Float(f),
LiteralValue::String(s) => ConstValue::String(s),
LiteralValue::Bool(b) => ConstValue::Bool(b),
LiteralValue::Null => ConstValue::Null,
LiteralValue::Void => ConstValue::Void,
};
let dst = self.value_gen.next();
self.emit_instruction(MirInstruction::Const {
dst,
value: const_value,
})?;
Ok(dst)
}
/// Build a binary operation
pub(super) fn build_binary_op(&mut self, left: ASTNode, operator: BinaryOperator, right: ASTNode) -> Result<ValueId, String> {
let lhs = self.build_expression(left)?;
let rhs = self.build_expression(right)?;
let dst = self.value_gen.next();
let mir_op = self.convert_binary_operator(operator)?;
match mir_op {
// Arithmetic operations
BinaryOpType::Arithmetic(op) => {
self.emit_instruction(MirInstruction::BinOp {
dst, op, lhs, rhs
})?;
},
// Comparison operations
BinaryOpType::Comparison(op) => {
self.emit_instruction(MirInstruction::Compare {
dst, op, lhs, rhs
})?;
},
}
Ok(dst)
}
/// Build a unary operation
pub(super) fn build_unary_op(&mut self, operator: String, operand: ASTNode) -> Result<ValueId, String> {
let operand_val = self.build_expression(operand)?;
let dst = self.value_gen.next();
let mir_op = self.convert_unary_operator(operator)?;
self.emit_instruction(MirInstruction::UnaryOp {
dst,
op: mir_op,
operand: operand_val,
})?;
Ok(dst)
}
/// Convert AST binary operator to MIR operator
fn convert_binary_operator(&self, op: BinaryOperator) -> Result<BinaryOpType, String> {
match op {
BinaryOperator::Add => Ok(BinaryOpType::Arithmetic(BinaryOp::Add)),
BinaryOperator::Subtract => Ok(BinaryOpType::Arithmetic(BinaryOp::Sub)),
BinaryOperator::Multiply => Ok(BinaryOpType::Arithmetic(BinaryOp::Mul)),
BinaryOperator::Divide => Ok(BinaryOpType::Arithmetic(BinaryOp::Div)),
BinaryOperator::Modulo => Ok(BinaryOpType::Arithmetic(BinaryOp::Mod)),
BinaryOperator::Equal => Ok(BinaryOpType::Comparison(CompareOp::Eq)),
BinaryOperator::NotEqual => Ok(BinaryOpType::Comparison(CompareOp::Ne)),
BinaryOperator::Less => Ok(BinaryOpType::Comparison(CompareOp::Lt)),
BinaryOperator::LessEqual => Ok(BinaryOpType::Comparison(CompareOp::Le)),
BinaryOperator::Greater => Ok(BinaryOpType::Comparison(CompareOp::Gt)),
BinaryOperator::GreaterEqual => Ok(BinaryOpType::Comparison(CompareOp::Ge)),
BinaryOperator::And => Ok(BinaryOpType::Arithmetic(BinaryOp::And)),
BinaryOperator::Or => Ok(BinaryOpType::Arithmetic(BinaryOp::Or)),
}
}
/// Convert AST unary operator to MIR operator
fn convert_unary_operator(&self, op: String) -> Result<UnaryOp, String> {
match op.as_str() {
"-" => Ok(UnaryOp::Neg),
"!" | "not" => Ok(UnaryOp::Not),
"~" => Ok(UnaryOp::BitNot),
_ => Err(format!("Unsupported unary operator: {}", op)),
}
}
/// Build variable access
pub(super) fn build_variable_access(&mut self, name: String) -> Result<ValueId, String> {
if let Some(&value_id) = self.variable_map.get(&name) {
Ok(value_id)
} else {
Err(format!("Undefined variable: {}", name))
}
}
/// Build field access
pub(super) fn build_field_access(&mut self, object: ASTNode, field: String) -> Result<ValueId, String> {
// Clone the object before building expression if we need to check it later
let object_clone = object.clone();
// First, build the object expression to get its ValueId
let object_value = self.build_expression(object)?;
// Get the field from the object using RefGet
let field_val = self.value_gen.next();
self.emit_instruction(MirInstruction::RefGet {
dst: field_val,
reference: object_value,
field: field.clone(),
})?;
// If we recorded origin class for this field on this base object, propagate it to this value id
if let Some(class_name) = self.field_origin_class.get(&(object_value, field.clone())).cloned() {
self.value_origin_newbox.insert(field_val, class_name);
}
// If we can infer the box type and the field is weak, emit WeakLoad (+ optional barrier)
let mut inferred_class: Option<String> = self.value_origin_newbox.get(&object_value).cloned();
// Fallback: if the object is a nested field access like (X.Y).Z, consult recorded field origins for X.Y
if inferred_class.is_none() {
if let ASTNode::FieldAccess { object: inner_obj, field: ref parent_field, .. } = object_clone {
// Build inner base to get a stable id and consult mapping
if let Ok(base_id) = self.build_expression(*inner_obj.clone()) {
if let Some(cls) = self.field_origin_class.get(&(base_id, parent_field.clone())) {
inferred_class = Some(cls.clone());
}
}
}
}
if let Some(class_name) = inferred_class {
if let Some(weak_set) = self.weak_fields_by_box.get(&class_name) {
if weak_set.contains(&field) {
// Barrier (read) PoC
let _ = self.emit_barrier_read(field_val);
// WeakLoad
let loaded = self.emit_weak_load(field_val)?;
return Ok(loaded);
}
}
}
Ok(field_val)
}
/// Build function call
pub(super) fn build_function_call(&mut self, name: String, args: Vec<ASTNode>) -> Result<ValueId, String> {
// Minimal TypeOp wiring via function-style: isType(value, "Type"), asType(value, "Type")
if (name == "isType" || name == "asType") && args.len() == 2 {
if let Some(type_name) = Self::extract_string_literal(&args[1]) {
let val = self.build_expression(args[0].clone())?;
let ty = Self::parse_type_name_to_mir(&type_name);
let dst = self.value_gen.next();
let op = if name == "isType" { super::TypeOpKind::Check } else { super::TypeOpKind::Cast };
self.emit_instruction(MirInstruction::TypeOp { dst, op, value: val, ty })?;
return Ok(dst);
}
}
// Build argument values
let mut arg_values = Vec::new();
for arg in args {
arg_values.push(self.build_expression(arg)?);
}
// Prepare function identifier as a const String value id
let func_val = self.value_gen.next();
self.emit_instruction(MirInstruction::Const {
dst: func_val,
value: ConstValue::String(name),
})?;
// Destination for the call result
let dst = self.value_gen.next();
// Emit Call with conservative read effects
self.emit_instruction(MirInstruction::Call {
dst: Some(dst),
func: func_val,
args: arg_values,
effects: EffectMask::READ.add(Effect::ReadHeap),
})?;
Ok(dst)
}
/// Parse type name string to MIR type
fn parse_type_name_to_mir(name: &str) -> super::MirType {
match name {
"Integer" | "Int" | "I64" => super::MirType::Integer,
"Float" | "F64" => super::MirType::Float,
"Bool" | "Boolean" => super::MirType::Bool,
"String" => super::MirType::String,
"Void" | "Unit" => super::MirType::Void,
other => super::MirType::Box(other.to_string()),
}
}
/// Extract string literal from AST node if possible
/// Supports: Literal("Type") and new StringBox("Type")
fn extract_string_literal(node: &ASTNode) -> Option<String> {
let mut cur = node;
loop {
match cur {
ASTNode::Literal { value: crate::ast::LiteralValue::String(s), .. } => return Some(s.clone()),
ASTNode::New { class, arguments, .. } if class == "StringBox" && arguments.len() == 1 => {
cur = &arguments[0];
continue;
}
_ => return None,
}
}
}
/// Build me expression
pub(super) fn build_me_expression(&mut self) -> Result<ValueId, String> {
// If lowering a method/birth function, "me" should be a parameter
if let Some(id) = self.variable_map.get("me").cloned() {
return Ok(id);
}
// Fallback: use a symbolic constant (legacy behavior)
let me_value = self.value_gen.next();
self.emit_instruction(MirInstruction::Const {
dst: me_value,
value: ConstValue::String("__me__".to_string()),
})?;
// Register a stable mapping so subsequent 'me' resolves to the same ValueId
self.variable_map.insert("me".to_string(), me_value);
Ok(me_value)
}
/// Build method call: object.method(arguments)
pub(super) fn build_method_call(&mut self, object: ASTNode, method: String, arguments: Vec<ASTNode>) -> Result<ValueId, String> {
// Minimal TypeOp wiring via method-style syntax: value.is("Type") / value.as("Type")
if (method == "is" || method == "as") && arguments.len() == 1 {
if let Some(type_name) = Self::extract_string_literal(&arguments[0]) {
// Build the object expression
let object_value = self.build_expression(object.clone())?;
// Map string to MIR type
let mir_ty = Self::parse_type_name_to_mir(&type_name);
let dst = self.value_gen.next();
let op = if method == "is" { super::TypeOpKind::Check } else { super::TypeOpKind::Cast };
self.emit_instruction(MirInstruction::TypeOp { dst, op, value: object_value, ty: mir_ty })?;
return Ok(dst);
}
}
// ExternCall判定はobjectの変数解決より先に行う未定義変数で落とさない
if let ASTNode::Variable { name: object_name, .. } = object.clone() {
// Build argument expressions first (externはobject自体を使わない)
let mut arg_values = Vec::new();
for arg in &arguments {
arg_values.push(self.build_expression(arg.clone())?);
}
match (object_name.as_str(), method.as_str()) {
("console", "log") => {
self.emit_instruction(MirInstruction::ExternCall {
dst: None,
iface_name: "env.console".to_string(),
method_name: "log".to_string(),
args: arg_values,
effects: EffectMask::IO,
})?;
let void_id = self.value_gen.next();
self.emit_instruction(MirInstruction::Const { dst: void_id, value: ConstValue::Void })?;
return Ok(void_id);
},
("canvas", "fillRect") | ("canvas", "fillText") => {
self.emit_instruction(MirInstruction::ExternCall {
dst: None,
iface_name: "env.canvas".to_string(),
method_name: method,
args: arg_values,
effects: EffectMask::IO,
})?;
let void_id = self.value_gen.next();
self.emit_instruction(MirInstruction::Const { dst: void_id, value: ConstValue::Void })?;
return Ok(void_id);
},
_ => {}
}
}
// Build the object expression
let object_value = self.build_expression(object.clone())?;
// Secondary interception for is/as in case early path did not trigger
if (method == "is" || method == "as") && arguments.len() == 1 {
if let Some(type_name) = Self::extract_string_literal(&arguments[0]) {
let mir_ty = Self::parse_type_name_to_mir(&type_name);
let dst = self.value_gen.next();
let op = if method == "is" { super::TypeOpKind::Check } else { super::TypeOpKind::Cast };
self.emit_instruction(MirInstruction::TypeOp { dst, op, value: object_value, ty: mir_ty })?;
return Ok(dst);
}
}
// Build argument expressions
let mut arg_values = Vec::new();
for arg in &arguments {
arg_values.push(self.build_expression(arg.clone())?);
}
// Create result value
let result_id = self.value_gen.next();
// Optimization: If the object is a direct `new ClassName(...)`, lower to a direct Call
if let ASTNode::New { class, .. } = object {
// Build function name and only lower to Call if the function exists (user-defined)
let func_name = format!("{}.{}{}", class, method, format!("/{}", arg_values.len()));
let can_lower = self.user_defined_boxes.contains(&class)
&& if let Some(ref module) = self.current_module { module.functions.contains_key(&func_name) } else { false };
if can_lower {
let func_val = self.value_gen.next();
self.emit_instruction(MirInstruction::Const { dst: func_val, value: ConstValue::String(func_name) })?;
let mut call_args = Vec::with_capacity(arg_values.len() + 1);
call_args.push(object_value);
call_args.extend(arg_values);
self.emit_instruction(MirInstruction::Call {
dst: Some(result_id),
func: func_val,
args: call_args,
effects: EffectMask::READ.add(Effect::ReadHeap),
})?;
return Ok(result_id);
}
// else fall through to BoxCall below
} else {
// If the object originates from a NewBox in this function, we can lower to Call as well
if let Some(class_name) = self.value_origin_newbox.get(&object_value).cloned() {
let func_name = format!("{}.{}{}", class_name, method, format!("/{}", arg_values.len()));
let can_lower = self.user_defined_boxes.contains(&class_name)
&& if let Some(ref module) = self.current_module { module.functions.contains_key(&func_name) } else { false };
if can_lower {
let func_val = self.value_gen.next();
self.emit_instruction(MirInstruction::Const { dst: func_val, value: ConstValue::String(func_name) })?;
let mut call_args = Vec::with_capacity(arg_values.len() + 1);
call_args.push(object_value);
call_args.extend(arg_values);
self.emit_instruction(MirInstruction::Call {
dst: Some(result_id),
func: func_val,
args: call_args,
effects: EffectMask::READ.add(Effect::ReadHeap),
})?;
return Ok(result_id);
}
}
}
// Fallback: Emit a BoxCall instruction for regular or plugin/builtin method calls
self.emit_instruction(MirInstruction::BoxCall {
dst: Some(result_id),
box_val: object_value,
method,
args: arg_values,
effects: EffectMask::READ.add(Effect::ReadHeap), // Method calls may have side effects
})?;
Ok(result_id)
}
/// Build from expression: from Parent.method(arguments)
pub(super) fn build_from_expression(&mut self, parent: String, method: String, arguments: Vec<ASTNode>) -> Result<ValueId, String> {
// Build argument expressions
let mut arg_values = Vec::new();
for arg in arguments {
arg_values.push(self.build_expression(arg)?);
}
// Get parent box's me value if available
if let Some(&parent_me) = self.variable_map.get(&format!("{}.__me__", parent)) {
// Emit from call with parent's me
let result = self.value_gen.next();
self.emit_instruction(MirInstruction::Call {
dst: Some(result),
func: self.value_gen.next(), // Placeholder for from resolution
args: vec![parent_me], // Include parent's me plus other args
effects: EffectMask::READ.add(Effect::ReadHeap),
})?;
Ok(result)
} else {
// Fallback behavior without proper parent context
let result = self.value_gen.next();
Ok(result)
}
}
/// Build expression from AST
pub(super) fn build_expression(&mut self, ast: ASTNode) -> Result<ValueId, String> {
match ast {
ASTNode::Literal { value, .. } => {
self.build_literal(value)
},
ASTNode::BinaryOp { left, operator, right, .. } => {
self.build_binary_op(*left, operator, *right)
},
ASTNode::UnaryOp { operator, operand, .. } => {
let op_string = match operator {
crate::ast::UnaryOperator::Minus => "-".to_string(),
crate::ast::UnaryOperator::Not => "not".to_string(),
};
self.build_unary_op(op_string, *operand)
},
ASTNode::Variable { name, .. } => {
self.build_variable_access(name.clone())
},
ASTNode::Me { .. } => {
self.build_me_expression()
},
ASTNode::MethodCall { object, method, arguments, .. } => {
// Early TypeOp lowering for method-style is()/as()
if (method == "is" || method == "as") && arguments.len() == 1 {
if let Some(type_name) = Self::extract_string_literal(&arguments[0]) {
let obj_val = self.build_expression(*object.clone())?;
let ty = Self::parse_type_name_to_mir(&type_name);
let dst = self.value_gen.next();
let op = if method == "is" { super::TypeOpKind::Check } else { super::TypeOpKind::Cast };
self.emit_instruction(MirInstruction::TypeOp { dst, op, value: obj_val, ty })?;
return Ok(dst);
}
}
self.build_method_call(*object.clone(), method.clone(), arguments.clone())
},
ASTNode::FromCall { parent, method, arguments, .. } => {
self.build_from_expression(parent.clone(), method.clone(), arguments.clone())
},
ASTNode::Assignment { target, value, .. } => {
// Check if target is a field access for RefSet
if let ASTNode::FieldAccess { object, field, .. } = target.as_ref() {
self.build_field_assignment(*object.clone(), field.clone(), *value.clone())
} else if let ASTNode::Variable { name, .. } = target.as_ref() {
self.build_assignment(name.clone(), *value.clone())
} else {
Err("Invalid assignment target".to_string())
}
},
ASTNode::FunctionCall { name, arguments, .. } => {
self.build_function_call(name.clone(), arguments.clone())
},
ASTNode::FieldAccess { object, field, .. } => {
self.build_field_access(*object.clone(), field.clone())
},
ASTNode::New { class, arguments, .. } => {
self.build_new_expression(class.clone(), arguments.clone())
},
ASTNode::AwaitExpression { expression, .. } => {
self.build_await_expression(*expression)
},
_ => {
Err(format!("Unsupported expression type: {:?}", ast))
}
}
}
/// Build assignment: variable = value
pub(super) fn build_assignment(&mut self, var_name: String, value: ASTNode) -> Result<ValueId, String> {
let value_id = self.build_expression(value)?;
// In SSA form, each assignment creates a new value
self.variable_map.insert(var_name.clone(), value_id);
Ok(value_id)
}
/// Build field assignment: object.field = value
pub(super) fn build_field_assignment(&mut self, object: ASTNode, field: String, value: ASTNode) -> Result<ValueId, String> {
// Build the object and value expressions
let object_value = self.build_expression(object)?;
let mut value_result = self.build_expression(value)?;
// If we can infer the box type and the field is weak, create WeakRef before store
if let Some(class_name) = self.value_origin_newbox.get(&object_value).cloned() {
if let Some(weak_set) = self.weak_fields_by_box.get(&class_name) {
if weak_set.contains(&field) {
value_result = self.emit_weak_new(value_result)?;
}
}
}
// Set the field using RefSet
self.emit_instruction(MirInstruction::RefSet {
reference: object_value,
field: field.clone(),
value: value_result,
})?;
// Emit a write barrier for weak fields (PoC)
if let Some(class_name) = self.value_origin_newbox.get(&object_value).cloned() {
if let Some(weak_set) = self.weak_fields_by_box.get(&class_name) {
if weak_set.contains(&field) {
let _ = self.emit_barrier_write(value_result);
}
}
}
// Record origin class for this field (if the value originates from NewBox of a known class)
if let Some(class_name) = self.value_origin_newbox.get(&value_result).cloned() {
self.field_origin_class.insert((object_value, field.clone()), class_name);
}
// Return the assigned value
Ok(value_result)
}
/// Build new expression: new ClassName(arguments)
pub(super) fn build_new_expression(&mut self, class: String, arguments: Vec<ASTNode>) -> Result<ValueId, String> {
// Phase 9.78a: Unified Box creation using NewBox instruction
// First, evaluate all arguments to get their ValueIds
let mut arg_values = Vec::new();
for arg in arguments {
let arg_value = self.build_expression(arg)?;
arg_values.push(arg_value);
}
// Generate the destination ValueId
let dst = self.value_gen.next();
// Emit NewBox instruction for all Box types
// VM will handle optimization for basic types internally
self.emit_instruction(MirInstruction::NewBox {
dst,
box_type: class.clone(),
args: arg_values.clone(),
})?;
// Record origin for optimization: dst was created by NewBox of class
self.value_origin_newbox.insert(dst, class);
// Immediately call birth(...) on the created instance to run constructor semantics.
// birth typically returns void; we don't capture the result here (dst: None)
self.emit_instruction(MirInstruction::BoxCall {
dst: None,
box_val: dst,
method: "birth".to_string(),
args: arg_values,
effects: EffectMask::READ.add(Effect::ReadHeap),
})?;
Ok(dst)
}
/// Build await expression: await expression
pub(super) fn build_await_expression(&mut self, expression: ASTNode) -> Result<ValueId, String> {
// Evaluate the expression (should be a Future)
let future_value = self.build_expression(expression)?;
// Create result value for the await
let result_id = self.value_gen.next();
// Emit await instruction
self.emit_instruction(MirInstruction::Await {
dst: result_id,
future: future_value,
effects: EffectMask::READ.add(Effect::Async),
})?;
Ok(result_id)
}
}