/*! * VM Backend - Execute MIR instructions in a virtual machine * * Simple stack-based VM for executing MIR code */ use crate::mir::{MirModule, MirFunction, MirInstruction, ConstValue, BinaryOp, CompareOp, UnaryOp, ValueId, BasicBlockId}; use crate::box_trait::{NyashBox, StringBox, IntegerBox, BoolBox, VoidBox}; use std::collections::HashMap; use super::vm_phi::LoopExecutor; /// VM execution error #[derive(Debug)] pub enum VMError { InvalidValue(String), InvalidInstruction(String), InvalidBasicBlock(String), DivisionByZero, StackUnderflow, TypeError(String), } impl std::fmt::Display for VMError { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { VMError::InvalidValue(msg) => write!(f, "Invalid value: {}", msg), VMError::InvalidInstruction(msg) => write!(f, "Invalid instruction: {}", msg), VMError::InvalidBasicBlock(msg) => write!(f, "Invalid basic block: {}", msg), VMError::DivisionByZero => write!(f, "Division by zero"), VMError::StackUnderflow => write!(f, "Stack underflow"), VMError::TypeError(msg) => write!(f, "Type error: {}", msg), } } } impl std::error::Error for VMError {} /// VM value representation #[derive(Debug, Clone)] pub enum VMValue { Integer(i64), Float(f64), Bool(bool), String(String), Future(crate::boxes::future::FutureBox), Void, } // Manual PartialEq implementation to avoid requiring PartialEq on FutureBox impl PartialEq for VMValue { fn eq(&self, other: &Self) -> bool { match (self, other) { (VMValue::Integer(a), VMValue::Integer(b)) => a == b, (VMValue::Float(a), VMValue::Float(b)) => a == b, (VMValue::Bool(a), VMValue::Bool(b)) => a == b, (VMValue::String(a), VMValue::String(b)) => a == b, (VMValue::Void, VMValue::Void) => true, // Future equality semantics are not defined; treat distinct futures as not equal (VMValue::Future(_), VMValue::Future(_)) => false, _ => false, } } } impl VMValue { /// Convert to NyashBox for output pub fn to_nyash_box(&self) -> Box { match self { VMValue::Integer(i) => Box::new(IntegerBox::new(*i)), VMValue::Float(f) => Box::new(StringBox::new(&f.to_string())), // Simplified for now VMValue::Bool(b) => Box::new(BoolBox::new(*b)), VMValue::String(s) => Box::new(StringBox::new(s)), VMValue::Future(f) => Box::new(f.clone()), VMValue::Void => Box::new(VoidBox::new()), } } /// Get string representation for printing pub fn to_string(&self) -> String { match self { VMValue::Integer(i) => i.to_string(), VMValue::Float(f) => f.to_string(), VMValue::Bool(b) => b.to_string(), VMValue::String(s) => s.clone(), VMValue::Future(f) => f.to_string_box().value, VMValue::Void => "void".to_string(), } } /// Attempt to convert to integer pub fn as_integer(&self) -> Result { match self { VMValue::Integer(i) => Ok(*i), _ => Err(VMError::TypeError(format!("Expected integer, got {:?}", self))), } } /// Attempt to convert to bool pub fn as_bool(&self) -> Result { match self { VMValue::Bool(b) => Ok(*b), VMValue::Integer(i) => Ok(*i != 0), _ => Err(VMError::TypeError(format!("Expected bool, got {:?}", self))), } } /// Convert from NyashBox to VMValue pub fn from_nyash_box(nyash_box: Box) -> VMValue { // Try to downcast to known types if let Some(int_box) = nyash_box.as_any().downcast_ref::() { VMValue::Integer(int_box.value) } else if let Some(bool_box) = nyash_box.as_any().downcast_ref::() { VMValue::Bool(bool_box.value) } else if let Some(string_box) = nyash_box.as_any().downcast_ref::() { VMValue::String(string_box.value.clone()) } else if let Some(future_box) = nyash_box.as_any().downcast_ref::() { VMValue::Future(future_box.clone()) } else { // For any other type, convert to string representation VMValue::String(nyash_box.to_string_box().value) } } } impl From<&ConstValue> for VMValue { fn from(const_val: &ConstValue) -> Self { match const_val { ConstValue::Integer(i) => VMValue::Integer(*i), ConstValue::Float(f) => VMValue::Float(*f), ConstValue::Bool(b) => VMValue::Bool(*b), ConstValue::String(s) => VMValue::String(s.clone()), ConstValue::Null => VMValue::Void, // Simplified ConstValue::Void => VMValue::Void, } } } /// Virtual Machine state pub struct VM { /// Value storage (uses ValueId as direct index into Vec for O(1) access) values: Vec>, /// Current function being executed current_function: Option, /// Current basic block current_block: Option, /// Previous basic block (for phi node resolution) previous_block: Option, /// Program counter within current block pc: usize, /// Return value from last execution #[allow(dead_code)] last_result: Option, /// Simple field storage for objects (maps reference -> field -> value) object_fields: HashMap>, /// Loop executor for handling phi nodes and loop-specific logic loop_executor: LoopExecutor, } impl VM { /// Create a new VM instance pub fn new() -> Self { Self { values: Vec::new(), current_function: None, current_block: None, previous_block: None, pc: 0, last_result: None, object_fields: HashMap::new(), loop_executor: LoopExecutor::new(), } } /// Execute a MIR module pub fn execute_module(&mut self, module: &MirModule) -> Result, VMError> { // Find main function let main_function = module.get_function("main") .ok_or_else(|| VMError::InvalidInstruction("No main function found".to_string()))?; // Execute main function let result = self.execute_function(main_function)?; // Convert result to NyashBox Ok(result.to_nyash_box()) } /// Execute a single function fn execute_function(&mut self, function: &MirFunction) -> Result { self.current_function = Some(function.signature.name.clone()); // Initialize loop executor for this function self.loop_executor.initialize(); // Start at entry block let mut current_block = function.entry_block; loop { let block = function.get_block(current_block) .ok_or_else(|| VMError::InvalidBasicBlock(format!("Block {} not found", current_block)))?; self.current_block = Some(current_block); self.pc = 0; let mut next_block = None; let mut should_return = None; // Execute instructions in this block (including terminator) let all_instructions: Vec<_> = block.all_instructions().collect(); for (index, instruction) in all_instructions.iter().enumerate() { self.pc = index; match self.execute_instruction(instruction)? { ControlFlow::Continue => continue, ControlFlow::Jump(target) => { next_block = Some(target); break; }, ControlFlow::Return(value) => { should_return = Some(value); break; }, } } // Handle control flow if let Some(return_value) = should_return { return Ok(return_value); } else if let Some(target) = next_block { // Update previous block before jumping self.previous_block = Some(current_block); // Record the transition in loop executor self.loop_executor.record_transition(current_block, target); current_block = target; } else { // Block ended without terminator - this shouldn't happen in well-formed MIR // but let's handle it gracefully by returning void return Ok(VMValue::Void); } } } /// Execute a single instruction fn execute_instruction(&mut self, instruction: &MirInstruction) -> Result { match instruction { MirInstruction::Const { dst, value } => { let vm_value = VMValue::from(value); self.set_value(*dst, vm_value); Ok(ControlFlow::Continue) }, MirInstruction::BinOp { dst, op, lhs, rhs } => { let left = self.get_value(*lhs)?; let right = self.get_value(*rhs)?; let result = self.execute_binary_op(op, &left, &right)?; self.set_value(*dst, result); Ok(ControlFlow::Continue) }, MirInstruction::UnaryOp { dst, op, operand } => { let operand_val = self.get_value(*operand)?; let result = self.execute_unary_op(op, &operand_val)?; self.set_value(*dst, result); Ok(ControlFlow::Continue) }, MirInstruction::Compare { dst, op, lhs, rhs } => { let left = self.get_value(*lhs)?; let right = self.get_value(*rhs)?; let result = self.execute_compare_op(op, &left, &right)?; self.set_value(*dst, VMValue::Bool(result)); Ok(ControlFlow::Continue) }, MirInstruction::Print { value, .. } => { let val = self.get_value(*value)?; println!("{}", val.to_string()); Ok(ControlFlow::Continue) }, MirInstruction::Return { value } => { let return_value = if let Some(val_id) = value { let val = self.get_value(*val_id)?; val } else { VMValue::Void }; Ok(ControlFlow::Return(return_value)) }, MirInstruction::Jump { target } => { Ok(ControlFlow::Jump(*target)) }, MirInstruction::Branch { condition, then_bb, else_bb } => { let cond_val = self.get_value(*condition)?; let cond_bool = cond_val.as_bool()?; if cond_bool { Ok(ControlFlow::Jump(*then_bb)) } else { Ok(ControlFlow::Jump(*else_bb)) } }, MirInstruction::Phi { dst, inputs } => { // Create a closure that captures self immutably let values = &self.values; let get_value_fn = |value_id: ValueId| -> Result { let index = value_id.to_usize(); if index < values.len() { if let Some(ref value) = values[index] { Ok(value.clone()) } else { Err(VMError::InvalidValue(format!("Value {} not set", value_id))) } } else { Err(VMError::InvalidValue(format!("Value {} out of bounds", value_id))) } }; // Delegate phi node execution to loop executor let selected_value = self.loop_executor.execute_phi( *dst, inputs, get_value_fn )?; self.set_value(*dst, selected_value); Ok(ControlFlow::Continue) }, // Missing instructions that need basic implementations MirInstruction::Load { dst, ptr } => { // For now, loading is the same as getting the value let value = self.get_value(*ptr)?; self.set_value(*dst, value); Ok(ControlFlow::Continue) }, MirInstruction::Store { value, ptr } => { // For now, storing just updates the ptr with the value let val = self.get_value(*value)?; self.set_value(*ptr, val); Ok(ControlFlow::Continue) }, MirInstruction::Call { dst, func: _, args: _, effects: _ } => { // For now, function calls return void // TODO: Implement proper function call handling if let Some(dst_id) = dst { self.set_value(*dst_id, VMValue::Void); } Ok(ControlFlow::Continue) }, MirInstruction::BoxCall { dst, box_val, method, args, effects: _ } => { // Get the box value let box_vm_value = self.get_value(*box_val)?; let box_nyash = box_vm_value.to_nyash_box(); // Evaluate arguments let mut arg_values = Vec::new(); for arg_id in args { let arg_vm_value = self.get_value(*arg_id)?; arg_values.push(arg_vm_value.to_nyash_box()); } // Call the method - this mimics interpreter method dispatch let result = self.call_box_method(box_nyash, method, arg_values)?; // Store result if destination is specified if let Some(dst_id) = dst { let vm_result = VMValue::from_nyash_box(result); self.set_value(*dst_id, vm_result); } Ok(ControlFlow::Continue) }, MirInstruction::NewBox { dst, box_type, args: _ } => { // Implement basic box creation for common types let result = match box_type.as_str() { "StringBox" => { // Create empty StringBox - in real implementation would use args let string_box = Box::new(StringBox::new("")); VMValue::from_nyash_box(string_box) }, "ArrayBox" => { // Create empty ArrayBox - in real implementation would use args let array_box = Box::new(crate::boxes::array::ArrayBox::new()); VMValue::from_nyash_box(array_box) }, "IntegerBox" => { // Create IntegerBox with default value let int_box = Box::new(IntegerBox::new(0)); VMValue::from_nyash_box(int_box) }, "BoolBox" => { // Create BoolBox with default value let bool_box = Box::new(BoolBox::new(false)); VMValue::from_nyash_box(bool_box) }, _ => { // For unknown types, create a placeholder string VMValue::String(format!("NewBox[{}]", box_type)) } }; self.set_value(*dst, result); Ok(ControlFlow::Continue) }, MirInstruction::TypeCheck { dst, value: _, expected_type: _ } => { // For now, type checks always return true // TODO: Implement proper type checking self.set_value(*dst, VMValue::Bool(true)); Ok(ControlFlow::Continue) }, MirInstruction::Cast { dst, value, target_type: _ } => { // For now, casting just copies the value // TODO: Implement proper type casting let val = self.get_value(*value)?; self.set_value(*dst, val); Ok(ControlFlow::Continue) }, MirInstruction::ArrayGet { dst, array: _, index: _ } => { // For now, array access returns a placeholder // TODO: Implement proper array access self.set_value(*dst, VMValue::Integer(0)); Ok(ControlFlow::Continue) }, MirInstruction::ArraySet { array: _, index: _, value: _ } => { // For now, array setting is a no-op // TODO: Implement proper array setting Ok(ControlFlow::Continue) }, MirInstruction::Copy { dst, src } => { // Copy instruction - duplicate the source value let val = self.get_value(*src)?; self.set_value(*dst, val); Ok(ControlFlow::Continue) }, MirInstruction::Debug { value: _, message: _ } => { // Debug instruction - skip debug output for performance Ok(ControlFlow::Continue) }, MirInstruction::Nop => { // No-op instruction Ok(ControlFlow::Continue) }, // Phase 5: Control flow & exception handling MirInstruction::Throw { exception, effects: _ } => { let exception_val = self.get_value(*exception)?; // For now, convert throw to error return (simplified exception handling) // In a full implementation, this would unwind the stack looking for catch handlers println!("Exception thrown: {}", exception_val.to_string()); Err(VMError::InvalidInstruction(format!("Unhandled exception: {}", exception_val.to_string()))) }, MirInstruction::Catch { exception_type: _, exception_value, handler_bb: _ } => { // For now, catch is a no-op since we don't have full exception handling // In a real implementation, this would set up exception handling metadata self.set_value(*exception_value, VMValue::Void); Ok(ControlFlow::Continue) }, MirInstruction::Safepoint => { // Safepoint is a no-op for now // In a real implementation, this could trigger GC, debugging, etc. Ok(ControlFlow::Continue) }, // Phase 6: Box reference operations MirInstruction::RefNew { dst, box_val } => { // For now, a reference is just the same as the box value // In a real implementation, this would create a proper reference let box_value = self.get_value(*box_val)?; self.set_value(*dst, box_value); Ok(ControlFlow::Continue) }, MirInstruction::RefGet { dst, reference, field } => { // Get field value from object let field_value = if let Some(fields) = self.object_fields.get(reference) { if let Some(value) = fields.get(field) { value.clone() } else { // Field not set yet, return default VMValue::Integer(0) } } else { // Object has no fields yet, return default VMValue::Integer(0) }; self.set_value(*dst, field_value); Ok(ControlFlow::Continue) }, MirInstruction::RefSet { reference, field, value } => { // Get the value to set let new_value = self.get_value(*value)?; // Ensure object has field storage if !self.object_fields.contains_key(reference) { self.object_fields.insert(*reference, HashMap::new()); } // Set the field if let Some(fields) = self.object_fields.get_mut(reference) { fields.insert(field.clone(), new_value); } Ok(ControlFlow::Continue) }, MirInstruction::WeakNew { dst, box_val } => { // For now, a weak reference is just a copy of the value // In a real implementation, this would create a proper weak reference let box_value = self.get_value(*box_val)?; self.set_value(*dst, box_value); Ok(ControlFlow::Continue) }, MirInstruction::WeakLoad { dst, weak_ref } => { // For now, loading from weak ref is the same as getting the value // In a real implementation, this would check if the weak ref is still valid let weak_value = self.get_value(*weak_ref)?; self.set_value(*dst, weak_value); Ok(ControlFlow::Continue) }, MirInstruction::BarrierRead { ptr: _ } => { // Memory barrier read is a no-op for now // In a real implementation, this would ensure memory ordering Ok(ControlFlow::Continue) }, MirInstruction::BarrierWrite { ptr: _ } => { // Memory barrier write is a no-op for now // In a real implementation, this would ensure memory ordering Ok(ControlFlow::Continue) }, // Phase 7: Async/Future Operations MirInstruction::FutureNew { dst, value } => { let initial_value = self.get_value(*value)?; let future = crate::boxes::future::FutureBox::new(); // Convert VMValue to NyashBox and set it in the future let nyash_box = initial_value.to_nyash_box(); future.set_result(nyash_box); self.set_value(*dst, VMValue::Future(future)); Ok(ControlFlow::Continue) }, MirInstruction::FutureSet { future, value } => { let future_val = self.get_value(*future)?; let new_value = self.get_value(*value)?; if let VMValue::Future(ref future_box) = future_val { future_box.set_result(new_value.to_nyash_box()); Ok(ControlFlow::Continue) } else { Err(VMError::TypeError(format!("Expected Future, got {:?}", future_val))) } }, MirInstruction::Await { dst, future } => { let future_val = self.get_value(*future)?; if let VMValue::Future(ref future_box) = future_val { // This blocks until the future is ready let result = future_box.get(); // Convert NyashBox back to VMValue let vm_value = VMValue::from_nyash_box(result); self.set_value(*dst, vm_value); Ok(ControlFlow::Continue) } else { Err(VMError::TypeError(format!("Expected Future, got {:?}", future_val))) } }, // Phase 9.7: External Function Calls MirInstruction::ExternCall { dst, iface_name, method_name, args, effects: _ } => { // For VM backend, we implement a stub that logs the call // Real implementation would route to native host functions let arg_values: Result, _> = args.iter().map(|id| self.get_value(*id)).collect(); let arg_values = arg_values?; println!("ExternCall: {}.{}({:?})", iface_name, method_name, arg_values); // For console.log, print the message if iface_name == "env.console" && method_name == "log" { for arg in &arg_values { if let VMValue::String(s) = arg { println!("Console: {}", s); } } } // For canvas operations, just log them for now if iface_name == "env.canvas" { println!("Canvas operation: {}", method_name); } // Store void result if destination is provided if let Some(dst) = dst { self.set_value(*dst, VMValue::Void); } Ok(ControlFlow::Continue) }, } } /// Get a value from storage fn get_value(&self, value_id: ValueId) -> Result { let index = value_id.to_usize(); if index < self.values.len() { if let Some(ref value) = self.values[index] { Ok(value.clone()) } else { Err(VMError::InvalidValue(format!("Value {} not set", value_id))) } } else { Err(VMError::InvalidValue(format!("Value {} out of bounds", value_id))) } } /// Set a value in the VM storage fn set_value(&mut self, value_id: ValueId, value: VMValue) { let index = value_id.to_usize(); // Resize Vec if necessary if index >= self.values.len() { self.values.resize(index + 1, None); } self.values[index] = Some(value); } /// Execute binary operation fn execute_binary_op(&self, op: &BinaryOp, left: &VMValue, right: &VMValue) -> Result { match (left, right) { (VMValue::Integer(l), VMValue::Integer(r)) => { let result = match op { BinaryOp::Add => *l + *r, BinaryOp::Sub => *l - *r, BinaryOp::Mul => *l * *r, BinaryOp::Div => { if *r == 0 { return Err(VMError::DivisionByZero); } *l / *r }, _ => return Err(VMError::InvalidInstruction(format!("Unsupported integer operation: {:?}", op))), }; Ok(VMValue::Integer(result)) }, (VMValue::String(l), VMValue::Integer(r)) => { // String + Integer concatenation match op { BinaryOp::Add => Ok(VMValue::String(format!("{}{}", l, r))), _ => Err(VMError::TypeError("String-integer operations only support addition".to_string())), } }, (VMValue::String(l), VMValue::String(r)) => { // String concatenation match op { BinaryOp::Add => Ok(VMValue::String(format!("{}{}", l, r))), _ => Err(VMError::TypeError("String operations only support addition".to_string())), } }, _ => Err(VMError::TypeError(format!("Unsupported binary operation: {:?} on {:?} and {:?}", op, left, right))), } } /// Execute unary operation fn execute_unary_op(&self, op: &UnaryOp, operand: &VMValue) -> Result { match (op, operand) { (UnaryOp::Neg, VMValue::Integer(i)) => Ok(VMValue::Integer(-i)), (UnaryOp::Not, VMValue::Bool(b)) => Ok(VMValue::Bool(!b)), _ => Err(VMError::TypeError(format!("Unsupported unary operation: {:?} on {:?}", op, operand))), } } /// Execute comparison operation fn execute_compare_op(&self, op: &CompareOp, left: &VMValue, right: &VMValue) -> Result { match (left, right) { (VMValue::Integer(l), VMValue::Integer(r)) => { let result = match op { CompareOp::Eq => l == r, CompareOp::Ne => l != r, CompareOp::Lt => l < r, CompareOp::Le => l <= r, CompareOp::Gt => l > r, CompareOp::Ge => l >= r, }; Ok(result) }, (VMValue::String(l), VMValue::String(r)) => { let result = match op { CompareOp::Eq => l == r, CompareOp::Ne => l != r, CompareOp::Lt => l < r, CompareOp::Le => l <= r, CompareOp::Gt => l > r, CompareOp::Ge => l >= r, }; Ok(result) }, _ => Err(VMError::TypeError(format!("Unsupported comparison: {:?} on {:?} and {:?}", op, left, right))), } } /// Call a method on a Box - simplified version of interpreter method dispatch fn call_box_method(&self, box_value: Box, method: &str, _args: Vec>) -> Result, VMError> { // For now, implement basic methods for common box types // This is a simplified version - real implementation would need full method dispatch // StringBox methods if let Some(string_box) = box_value.as_any().downcast_ref::() { match method { "length" | "len" => { return Ok(Box::new(IntegerBox::new(string_box.value.len() as i64))); }, "toString" => { return Ok(Box::new(StringBox::new(string_box.value.clone()))); }, "substring" => { // substring(start, end) - simplified implementation if _args.len() >= 2 { if let (Some(start_box), Some(end_box)) = (_args.get(0), _args.get(1)) { if let (Some(start_int), Some(end_int)) = ( start_box.as_any().downcast_ref::(), end_box.as_any().downcast_ref::() ) { let start = start_int.value.max(0) as usize; let end = end_int.value.max(0) as usize; let len = string_box.value.len(); if start <= len { let end_idx = end.min(len); if start <= end_idx { let substr = &string_box.value[start..end_idx]; return Ok(Box::new(StringBox::new(substr))); } } } } } return Ok(Box::new(StringBox::new(""))); // Return empty string on error }, "concat" => { // concat(other) - concatenate with another string if let Some(other_box) = _args.get(0) { let other_str = other_box.to_string_box().value; let result = string_box.value.clone() + &other_str; return Ok(Box::new(StringBox::new(result))); } return Ok(Box::new(StringBox::new(string_box.value.clone()))); }, _ => return Ok(Box::new(VoidBox::new())), // Unsupported method } } // IntegerBox methods if let Some(integer_box) = box_value.as_any().downcast_ref::() { match method { "toString" => { return Ok(Box::new(StringBox::new(integer_box.value.to_string()))); }, "abs" => { return Ok(Box::new(IntegerBox::new(integer_box.value.abs()))); }, _ => return Ok(Box::new(VoidBox::new())), // Unsupported method } } // BoolBox methods if let Some(bool_box) = box_value.as_any().downcast_ref::() { match method { "toString" => { return Ok(Box::new(StringBox::new(bool_box.value.to_string()))); }, _ => return Ok(Box::new(VoidBox::new())), // Unsupported method } } // ArrayBox methods - needed for kilo editor if let Some(array_box) = box_value.as_any().downcast_ref::() { match method { "length" | "len" => { let items = array_box.items.read().unwrap(); return Ok(Box::new(IntegerBox::new(items.len() as i64))); }, "get" => { // get(index) - get element at index if let Some(index_box) = _args.get(0) { if let Some(index_int) = index_box.as_any().downcast_ref::() { let items = array_box.items.read().unwrap(); let index = index_int.value as usize; if index < items.len() { return Ok(items[index].clone_box()); } } } return Ok(Box::new(VoidBox::new())); // Return void for out of bounds }, "set" => { // set(index, value) - simplified implementation // Note: This is a read-only operation in the VM for now // In a real implementation, we'd need mutable access return Ok(Box::new(VoidBox::new())); }, "push" => { // push(value) - simplified implementation // Note: This is a read-only operation in the VM for now return Ok(Box::new(VoidBox::new())); }, "insert" => { // insert(index, value) - simplified implementation // Note: This is a read-only operation in the VM for now return Ok(Box::new(VoidBox::new())); }, _ => return Ok(Box::new(VoidBox::new())), // Unsupported method } } // Default: return void for any unrecognized box type or method Ok(Box::new(VoidBox::new())) } } /// Control flow result from instruction execution enum ControlFlow { Continue, Jump(BasicBlockId), Return(VMValue), } impl Default for VM { fn default() -> Self { Self::new() } } #[cfg(test)] mod tests { use super::*; use crate::mir::{MirModule, MirFunction, FunctionSignature, MirType, EffectMask, BasicBlock}; #[test] fn test_basic_vm_execution() { let mut vm = VM::new(); // Test constant loading let const_instr = MirInstruction::Const { dst: ValueId(1), value: ConstValue::Integer(42), }; let result = vm.execute_instruction(&const_instr); assert!(result.is_ok()); let value = vm.get_value(ValueId(1)).unwrap(); assert_eq!(value.as_integer().unwrap(), 42); } #[test] fn test_binary_operations() { let mut vm = VM::new(); // Load constants vm.set_value(ValueId(1), VMValue::Integer(10)); vm.set_value(ValueId(2), VMValue::Integer(32)); // Test addition let add_instr = MirInstruction::BinOp { dst: ValueId(3), op: BinaryOp::Add, lhs: ValueId(1), rhs: ValueId(2), }; let result = vm.execute_instruction(&add_instr); assert!(result.is_ok()); let value = vm.get_value(ValueId(3)).unwrap(); assert_eq!(value.as_integer().unwrap(), 42); } }