/*! * MIR Builder - Converts AST to MIR/SSA form * * Implements AST → MIR conversion with SSA construction */ use super::{ MirInstruction, BasicBlock, BasicBlockId, MirFunction, MirModule, FunctionSignature, ValueId, ConstValue, BinaryOp, UnaryOp, CompareOp, MirType, EffectMask, Effect, BasicBlockIdGenerator, ValueIdGenerator }; use crate::ast::{ASTNode, LiteralValue, BinaryOperator}; use std::collections::HashMap; /// MIR builder for converting AST to SSA form pub struct MirBuilder { /// Current module being built current_module: Option, /// Current function being built current_function: Option, /// Current basic block being built current_block: Option, /// Value ID generator value_gen: ValueIdGenerator, /// Basic block ID generator block_gen: BasicBlockIdGenerator, /// Variable name to ValueId mapping (for SSA conversion) variable_map: HashMap, /// Pending phi functions to be inserted #[allow(dead_code)] pending_phis: Vec<(BasicBlockId, ValueId, String)>, } impl MirBuilder { /// Create a new MIR builder pub fn new() -> Self { Self { current_module: None, current_function: None, current_block: None, value_gen: ValueIdGenerator::new(), block_gen: BasicBlockIdGenerator::new(), variable_map: HashMap::new(), pending_phis: Vec::new(), } } /// Build a complete MIR module from AST pub fn build_module(&mut self, ast: ASTNode) -> Result { // Create a new module let module = MirModule::new("main".to_string()); // Create a main function to contain the AST let main_signature = FunctionSignature { name: "main".to_string(), params: vec![], return_type: MirType::Void, effects: EffectMask::PURE, }; let entry_block = self.block_gen.next(); let mut main_function = MirFunction::new(main_signature, entry_block); main_function.metadata.is_entry_point = true; // Set up building context self.current_module = Some(module); self.current_function = Some(main_function); self.current_block = Some(entry_block); // Add safepoint at function entry self.emit_instruction(MirInstruction::Safepoint)?; // Convert AST to MIR let result_value = self.build_expression(ast)?; // Add return instruction if needed if let Some(block_id) = self.current_block { if let Some(ref mut function) = self.current_function { if let Some(block) = function.get_block_mut(block_id) { if !block.is_terminated() { block.add_instruction(MirInstruction::Return { value: Some(result_value), }); } } } } // Finalize and return module let mut module = self.current_module.take().unwrap(); let function = self.current_function.take().unwrap(); module.add_function(function); Ok(module) } /// Build an expression and return its value ID fn build_expression(&mut self, ast: ASTNode) -> Result { match ast { ASTNode::Literal { value, .. } => { self.build_literal(value) }, ASTNode::BinaryOp { left, operator, right, .. } => { self.build_binary_op(*left, operator, *right) }, ASTNode::UnaryOp { operator, operand, .. } => { let op_string = match operator { crate::ast::UnaryOperator::Minus => "-".to_string(), crate::ast::UnaryOperator::Not => "not".to_string(), }; self.build_unary_op(op_string, *operand) }, ASTNode::Variable { name, .. } => { self.build_variable_access(name.clone()) }, ASTNode::Me { .. } => { self.build_me_expression() }, ASTNode::MethodCall { object, method, arguments, .. } => { self.build_method_call(*object.clone(), method.clone(), arguments.clone()) }, ASTNode::FromCall { parent, method, arguments, .. } => { self.build_from_expression(parent.clone(), method.clone(), arguments.clone()) }, ASTNode::Assignment { target, value, .. } => { // Check if target is a field access for RefSet if let ASTNode::FieldAccess { object, field, .. } = target.as_ref() { self.build_field_assignment(*object.clone(), field.clone(), *value.clone()) } else if let ASTNode::Variable { name, .. } = target.as_ref() { // Plain variable assignment - existing behavior self.build_assignment(name.clone(), *value.clone()) } else { Err("Complex assignment targets not yet supported in MIR".to_string()) } }, ASTNode::FunctionCall { name, arguments, .. } => { self.build_function_call(name.clone(), arguments.clone()) }, ASTNode::Print { expression, .. } => { self.build_print_statement(*expression.clone()) }, ASTNode::Program { statements, .. } => { self.build_block(statements.clone()) }, ASTNode::If { condition, then_body, else_body, .. } => { let else_ast = if let Some(else_statements) = else_body { Some(ASTNode::Program { statements: else_statements.clone(), span: crate::ast::Span::unknown(), }) } else { None }; self.build_if_statement( *condition.clone(), ASTNode::Program { statements: then_body.clone(), span: crate::ast::Span::unknown(), }, else_ast ) }, ASTNode::Loop { condition, body, .. } => { self.build_loop_statement(*condition.clone(), body.clone()) }, ASTNode::TryCatch { try_body, catch_clauses, finally_body, .. } => { self.build_try_catch_statement(try_body.clone(), catch_clauses.clone(), finally_body.clone()) }, ASTNode::Throw { expression, .. } => { self.build_throw_statement(*expression.clone()) }, ASTNode::Return { value, .. } => { self.build_return_statement(value.clone()) }, ASTNode::Local { variables, initial_values, .. } => { self.build_local_statement(variables.clone(), initial_values.clone()) }, ASTNode::BoxDeclaration { name, methods, is_static, fields, .. } => { if is_static && name == "Main" { self.build_static_main_box(methods.clone()) } else { // Support user-defined boxes - handle as statement, return void self.build_box_declaration(name.clone(), methods.clone(), fields.clone())?; // Return a void value since this is a statement let void_val = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_val, value: ConstValue::Void, })?; Ok(void_val) } }, ASTNode::FieldAccess { object, field, .. } => { self.build_field_access(*object.clone(), field.clone()) }, ASTNode::New { class, arguments, .. } => { self.build_new_expression(class.clone(), arguments.clone()) }, // Phase 7: Async operations ASTNode::Nowait { variable, expression, .. } => { self.build_nowait_statement(variable.clone(), *expression.clone()) }, ASTNode::AwaitExpression { expression, .. } => { self.build_await_expression(*expression.clone()) }, _ => { Err(format!("Unsupported AST node type: {:?}", ast)) } } } /// Build a literal value fn build_literal(&mut self, literal: LiteralValue) -> Result { let const_value = match literal { LiteralValue::Integer(n) => ConstValue::Integer(n), LiteralValue::Float(f) => ConstValue::Float(f), LiteralValue::String(s) => ConstValue::String(s), LiteralValue::Bool(b) => ConstValue::Bool(b), LiteralValue::Null => ConstValue::Null, LiteralValue::Void => ConstValue::Void, }; let dst = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst, value: const_value, })?; Ok(dst) } /// Build a binary operation fn build_binary_op(&mut self, left: ASTNode, operator: BinaryOperator, right: ASTNode) -> Result { let lhs = self.build_expression(left)?; let rhs = self.build_expression(right)?; let dst = self.value_gen.next(); let mir_op = self.convert_binary_operator(operator)?; match mir_op { // Arithmetic operations BinaryOpType::Arithmetic(op) => { self.emit_instruction(MirInstruction::BinOp { dst, op, lhs, rhs })?; }, // Comparison operations BinaryOpType::Comparison(op) => { self.emit_instruction(MirInstruction::Compare { dst, op, lhs, rhs })?; }, } Ok(dst) } /// Build a unary operation fn build_unary_op(&mut self, operator: String, operand: ASTNode) -> Result { let operand_val = self.build_expression(operand)?; let dst = self.value_gen.next(); // Phase 2: Convert UnaryOp to intrinsic call // Create intrinsic function name based on operator let intrinsic_name = match operator.as_str() { "-" => "@unary_neg", "!" | "not" => "@unary_not", "~" => "@unary_bitnot", _ => return Err(format!("Unsupported unary operator: {}", operator)), }; // Create string constant for intrinsic function name let func_name_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: func_name_id, value: ConstValue::String(intrinsic_name.to_string()), })?; // Emit intrinsic call self.emit_instruction(MirInstruction::Call { dst: Some(dst), func: func_name_id, args: vec![operand_val], effects: EffectMask::PURE, // Unary operations are pure })?; Ok(dst) } /// Build variable access fn build_variable_access(&mut self, name: String) -> Result { if let Some(&value_id) = self.variable_map.get(&name) { Ok(value_id) } else { Err(format!("Undefined variable: {}", name)) } } /// Build assignment fn build_assignment(&mut self, var_name: String, value: ASTNode) -> Result { let value_id = self.build_expression(value)?; // In SSA form, each assignment creates a new value self.variable_map.insert(var_name, value_id); Ok(value_id) } /// Build function call fn build_function_call(&mut self, name: String, args: Vec) -> Result { // Build argument values let mut arg_values = Vec::new(); for arg in args { arg_values.push(self.build_expression(arg)?); } let dst = self.value_gen.next(); // For now, treat all function calls as Box method calls if arg_values.is_empty() { return Err("Function calls require at least one argument (the object)".to_string()); } let box_val = arg_values.remove(0); self.emit_instruction(MirInstruction::BoxCall { dst: Some(dst), box_val, method: name, args: arg_values, effects: EffectMask::PURE.add(Effect::ReadHeap), // Conservative default })?; Ok(dst) } /// Build print statement - converts to console output fn build_print_statement(&mut self, expression: ASTNode) -> Result { let value = self.build_expression(expression)?; // Phase 2: Convert Print to intrinsic call (@print) // Create string constant for intrinsic function name let func_name_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: func_name_id, value: ConstValue::String("@print".to_string()), })?; // Emit intrinsic call (print returns void) self.emit_instruction(MirInstruction::Call { dst: None, // Print has no return value func: func_name_id, args: vec![value], effects: EffectMask::PURE.add(Effect::Io), // IO effect for print })?; // Return the value that was printed Ok(value) } /// Build a block of statements fn build_block(&mut self, statements: Vec) -> Result { let mut last_value = None; for statement in statements { last_value = Some(self.build_expression(statement)?); } // Return last value or void Ok(last_value.unwrap_or_else(|| { let void_val = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_val, value: ConstValue::Void, }).unwrap(); void_val })) } /// Build if statement with conditional branches fn build_if_statement(&mut self, condition: ASTNode, then_branch: ASTNode, else_branch: Option) -> Result { let condition_val = self.build_expression(condition)?; // Create basic blocks for then/else/merge let then_block = self.block_gen.next(); let else_block = self.block_gen.next(); let merge_block = self.block_gen.next(); // Emit branch instruction in current block self.emit_instruction(MirInstruction::Branch { condition: condition_val, then_bb: then_block, else_bb: else_block, })?; // Build then branch self.current_block = Some(then_block); self.ensure_block_exists(then_block)?; let then_value = self.build_expression(then_branch)?; if !self.is_current_block_terminated() { self.emit_instruction(MirInstruction::Jump { target: merge_block })?; } // Build else branch self.current_block = Some(else_block); self.ensure_block_exists(else_block)?; let else_value = if let Some(else_ast) = else_branch { self.build_expression(else_ast)? } else { // No else branch, use void let void_val = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_val, value: ConstValue::Void, })?; void_val }; if !self.is_current_block_terminated() { self.emit_instruction(MirInstruction::Jump { target: merge_block })?; } // Create merge block with phi function self.current_block = Some(merge_block); self.ensure_block_exists(merge_block)?; let result_val = self.value_gen.next(); self.emit_instruction(MirInstruction::Phi { dst: result_val, inputs: vec![ (then_block, then_value), (else_block, else_value), ], })?; Ok(result_val) } /// Emit an instruction to the current basic block fn emit_instruction(&mut self, instruction: MirInstruction) -> Result<(), String> { let block_id = self.current_block.ok_or("No current basic block")?; if let Some(ref mut function) = self.current_function { if let Some(block) = function.get_block_mut(block_id) { block.add_instruction(instruction); Ok(()) } else { Err(format!("Basic block {} does not exist", block_id)) } } else { Err("No current function".to_string()) } } /// Ensure a basic block exists in the current function fn ensure_block_exists(&mut self, block_id: BasicBlockId) -> Result<(), String> { if let Some(ref mut function) = self.current_function { if !function.blocks.contains_key(&block_id) { let block = BasicBlock::new(block_id); function.add_block(block); } Ok(()) } else { Err("No current function".to_string()) } } /// Build a loop statement: loop(condition) { body } fn build_loop_statement(&mut self, condition: ASTNode, body: Vec) -> Result { // Add safepoint at loop entry self.emit_instruction(MirInstruction::Safepoint)?; let loop_header = self.block_gen.next(); let loop_body = self.block_gen.next(); let loop_exit = self.block_gen.next(); // Jump to loop header self.emit_instruction(MirInstruction::Jump { target: loop_header })?; // Create loop header block self.start_new_block(loop_header)?; // Evaluate condition let condition_value = self.build_expression(condition)?; // Branch based on condition self.emit_instruction(MirInstruction::Branch { condition: condition_value, then_bb: loop_body, else_bb: loop_exit, })?; // Create loop body block self.start_new_block(loop_body)?; // Add safepoint at loop body start self.emit_instruction(MirInstruction::Safepoint)?; // Build loop body let body_ast = ASTNode::Program { statements: body, span: crate::ast::Span::unknown(), }; self.build_expression(body_ast)?; // Jump back to loop header self.emit_instruction(MirInstruction::Jump { target: loop_header })?; // Create exit block self.start_new_block(loop_exit)?; // Return void value let void_dst = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_dst, value: ConstValue::Void, })?; Ok(void_dst) } /// Build a try/catch statement fn build_try_catch_statement(&mut self, try_body: Vec, catch_clauses: Vec, finally_body: Option>) -> Result { let try_block = self.block_gen.next(); let catch_block = self.block_gen.next(); let finally_block = if finally_body.is_some() { Some(self.block_gen.next()) } else { None }; let exit_block = self.block_gen.next(); // Phase 2: Convert Catch to intrinsic call (@set_exception_handler) if let Some(catch_clause) = catch_clauses.first() { let exception_value = self.value_gen.next(); // Create string constants for intrinsic function name and exception type let func_name_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: func_name_id, value: ConstValue::String("@set_exception_handler".to_string()), })?; let exception_type_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: exception_type_id, value: ConstValue::String(catch_clause.exception_type.clone().unwrap_or("*".to_string())), })?; let handler_bb_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: handler_bb_id, value: ConstValue::Integer(catch_block.as_u32() as i64), })?; // Register catch handler via intrinsic call self.emit_instruction(MirInstruction::Call { dst: Some(exception_value), func: func_name_id, args: vec![exception_type_id, handler_bb_id], effects: EffectMask::CONTROL, // Exception handling has control effects })?; } // Jump to try block self.emit_instruction(MirInstruction::Jump { target: try_block })?; // Build try block self.start_new_block(try_block)?; let try_ast = ASTNode::Program { statements: try_body, span: crate::ast::Span::unknown(), }; let _try_result = self.build_expression(try_ast)?; // Normal completion of try block - jump to finally or exit (if not already terminated) if !self.is_current_block_terminated() { let next_target = finally_block.unwrap_or(exit_block); self.emit_instruction(MirInstruction::Jump { target: next_target })?; } // Build catch block (reachable via exception handling) self.start_new_block(catch_block)?; // Handle catch clause if let Some(catch_clause) = catch_clauses.first() { // Build catch body let catch_ast = ASTNode::Program { statements: catch_clause.body.clone(), span: crate::ast::Span::unknown(), }; self.build_expression(catch_ast)?; } // Catch completion - jump to finally or exit (if not already terminated) if !self.is_current_block_terminated() { let next_target = finally_block.unwrap_or(exit_block); self.emit_instruction(MirInstruction::Jump { target: next_target })?; } // Build finally block if present if let (Some(finally_block_id), Some(finally_statements)) = (finally_block, finally_body) { self.start_new_block(finally_block_id)?; let finally_ast = ASTNode::Program { statements: finally_statements, span: crate::ast::Span::unknown(), }; self.build_expression(finally_ast)?; self.emit_instruction(MirInstruction::Jump { target: exit_block })?; } // Create exit block self.start_new_block(exit_block)?; // Return void for now (in a complete implementation, would use phi for try/catch values) let result = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: result, value: ConstValue::Void, })?; Ok(result) } /// Build a throw statement fn build_throw_statement(&mut self, expression: ASTNode) -> Result { let exception_value = self.build_expression(expression)?; // Phase 2: Convert Throw to intrinsic call (@throw) // Create string constant for intrinsic function name let func_name_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: func_name_id, value: ConstValue::String("@throw".to_string()), })?; // Emit intrinsic call (throw has PANIC effect and doesn't return) self.emit_instruction(MirInstruction::Call { dst: None, // Throw never returns func: func_name_id, args: vec![exception_value], effects: EffectMask::PANIC, // PANIC effect for throw })?; // Throw doesn't return normally, but we need to return a value for the type system // We can't add more instructions after throw, so just return the exception value Ok(exception_value) } /// Build local variable declarations with optional initial values fn build_local_statement(&mut self, variables: Vec, initial_values: Vec>>) -> Result { let mut last_value = None; // Process each variable declaration for (i, var_name) in variables.iter().enumerate() { let value_id = if i < initial_values.len() && initial_values[i].is_some() { // Variable has initial value - evaluate it let init_expr = initial_values[i].as_ref().unwrap(); self.build_expression(*init_expr.clone())? } else { // No initial value - assign void (uninitialized) let void_dst = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_dst, value: ConstValue::Void, })?; void_dst }; // Register variable in SSA form self.variable_map.insert(var_name.clone(), value_id); last_value = Some(value_id); } // Return the last assigned value, or void if no variables Ok(last_value.unwrap_or_else(|| { let void_val = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_val, value: ConstValue::Void, }).unwrap(); void_val })) } /// Build return statement fn build_return_statement(&mut self, value: Option>) -> Result { let return_value = if let Some(expr) = value { self.build_expression(*expr)? } else { // Return void if no value specified let void_dst = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_dst, value: ConstValue::Void, })?; void_dst }; // Emit return instruction self.emit_instruction(MirInstruction::Return { value: Some(return_value), })?; Ok(return_value) } /// Build static box Main - extracts main() method body and converts to Program fn build_static_main_box(&mut self, methods: std::collections::HashMap) -> Result { // Look for the main() method if let Some(main_method) = methods.get("main") { if let ASTNode::FunctionDeclaration { body, .. } = main_method { // Convert the method body to a Program AST node and lower it let program_ast = ASTNode::Program { statements: body.clone(), span: crate::ast::Span::unknown(), }; // Use existing Program lowering logic self.build_expression(program_ast) } else { Err("main method in static box Main is not a FunctionDeclaration".to_string()) } } else { Err("static box Main must contain a main() method".to_string()) } } /// Build field access: object.field fn build_field_access(&mut self, object: ASTNode, field: String) -> Result { // First, build the object expression to get its ValueId let object_value = self.build_expression(object)?; // Get the field from the object using BoxFieldLoad (Phase 8.5 new instruction) let result_id = self.value_gen.next(); self.emit_instruction(MirInstruction::BoxFieldLoad { dst: result_id, box_val: object_value, field, })?; Ok(result_id) } /// Build new expression: new ClassName(arguments) fn build_new_expression(&mut self, class: String, arguments: Vec) -> Result { // Special handling for StringBox - if it has a string literal argument, // treat it as a string constant, not a box creation if class == "StringBox" && arguments.len() == 1 { if let ASTNode::Literal { value: LiteralValue::String(s), .. } = &arguments[0] { // Just create a string constant let dst = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst, value: ConstValue::String(s.clone()), })?; // Create RefNew for the StringBox let string_box_dst = self.value_gen.next(); self.emit_instruction(MirInstruction::RefNew { dst: string_box_dst, box_val: dst, })?; return Ok(string_box_dst); } } // For Phase 6.1, we'll create a simple RefNew without processing arguments // In a full implementation, arguments would be used for constructor calls let dst = self.value_gen.next(); // For now, create a "box type" value representing the class let type_value = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: type_value, value: ConstValue::String(class), })?; // Create the reference using RefNew self.emit_instruction(MirInstruction::RefNew { dst, box_val: type_value, })?; Ok(dst) } /// Build field assignment: object.field = value fn build_field_assignment(&mut self, object: ASTNode, field: String, value: ASTNode) -> Result { // Build the object and value expressions let object_value = self.build_expression(object)?; let value_result = self.build_expression(value)?; // Set the field using BoxFieldStore (Phase 8.5 new instruction) self.emit_instruction(MirInstruction::BoxFieldStore { box_val: object_value, field, value: value_result, })?; // Return the assigned value Ok(value_result) } /// Start a new basic block fn start_new_block(&mut self, block_id: BasicBlockId) -> Result<(), String> { if let Some(ref mut function) = self.current_function { function.add_block(BasicBlock::new(block_id)); self.current_block = Some(block_id); Ok(()) } else { Err("No current function".to_string()) } } /// Check if the current basic block is terminated fn is_current_block_terminated(&self) -> bool { if let (Some(block_id), Some(ref function)) = (self.current_block, &self.current_function) { if let Some(block) = function.get_block(block_id) { return block.is_terminated(); } } false } /// Convert AST binary operator to MIR operator fn convert_binary_operator(&self, op: BinaryOperator) -> Result { match op { BinaryOperator::Add => Ok(BinaryOpType::Arithmetic(BinaryOp::Add)), BinaryOperator::Subtract => Ok(BinaryOpType::Arithmetic(BinaryOp::Sub)), BinaryOperator::Multiply => Ok(BinaryOpType::Arithmetic(BinaryOp::Mul)), BinaryOperator::Divide => Ok(BinaryOpType::Arithmetic(BinaryOp::Div)), BinaryOperator::Modulo => Ok(BinaryOpType::Arithmetic(BinaryOp::Mod)), BinaryOperator::Equal => Ok(BinaryOpType::Comparison(CompareOp::Eq)), BinaryOperator::NotEqual => Ok(BinaryOpType::Comparison(CompareOp::Ne)), BinaryOperator::Less => Ok(BinaryOpType::Comparison(CompareOp::Lt)), BinaryOperator::LessEqual => Ok(BinaryOpType::Comparison(CompareOp::Le)), BinaryOperator::Greater => Ok(BinaryOpType::Comparison(CompareOp::Gt)), BinaryOperator::GreaterEqual => Ok(BinaryOpType::Comparison(CompareOp::Ge)), BinaryOperator::And => Ok(BinaryOpType::Arithmetic(BinaryOp::And)), BinaryOperator::Or => Ok(BinaryOpType::Arithmetic(BinaryOp::Or)), } } /// Convert AST unary operator to MIR operator fn convert_unary_operator(&self, op: String) -> Result { match op.as_str() { "-" => Ok(UnaryOp::Neg), "!" | "not" => Ok(UnaryOp::Not), "~" => Ok(UnaryOp::BitNot), _ => Err(format!("Unsupported unary operator: {}", op)), } } /// Build nowait statement: nowait variable = expression fn build_nowait_statement(&mut self, variable: String, expression: ASTNode) -> Result { // Evaluate the expression let expression_value = self.build_expression(expression)?; // Phase 2: Convert FutureNew to NewBox + BoxCall implementation let future_id = self.value_gen.next(); self.emit_instruction(MirInstruction::NewBox { dst: future_id, box_type: "FutureBox".to_string(), args: vec![expression_value], })?; // Store the future in the variable self.variable_map.insert(variable.clone(), future_id); Ok(future_id) } /// Build await expression: await expression fn build_await_expression(&mut self, expression: ASTNode) -> Result { // Evaluate the expression (should be a Future) let future_value = self.build_expression(expression)?; // Phase 2: Convert Await to BoxCall implementation let result_id = self.value_gen.next(); // Emit await as a method call on the future box self.emit_instruction(MirInstruction::BoxCall { dst: Some(result_id), box_val: future_value, method: "await".to_string(), args: vec![], effects: EffectMask::IO.add(Effect::Control), // Await has IO and control effects })?; Ok(result_id) } /// Build me expression: me fn build_me_expression(&mut self) -> Result { // For now, return a reference to the current instance // In a full implementation, this would resolve to the actual instance reference let me_value = self.value_gen.next(); // For simplicity, emit a constant representing "me" // In practice, this should resolve to the current instance context self.emit_instruction(MirInstruction::Const { dst: me_value, value: ConstValue::String("__me__".to_string()), })?; Ok(me_value) } /// Build method call: object.method(arguments) fn build_method_call(&mut self, object: ASTNode, method: String, arguments: Vec) -> Result { // Build the object expression let object_value = self.build_expression(object.clone())?; // Build argument expressions let mut arg_values = Vec::new(); for arg in arguments { arg_values.push(self.build_expression(arg)?); } // Create result value let result_id = self.value_gen.next(); // Check if this is an external call (console.log, canvas.fillRect, etc.) if let ASTNode::Variable { name: object_name, .. } = object { match (object_name.as_str(), method.as_str()) { ("console", "log") => { // Generate ExternCall for console.log self.emit_instruction(MirInstruction::ExternCall { dst: None, // console.log is void iface_name: "env.console".to_string(), method_name: "log".to_string(), args: arg_values, effects: EffectMask::IO, // Console output is I/O })?; // Return void value let void_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_id, value: ConstValue::Void, })?; return Ok(void_id); }, ("canvas", "fillRect") => { // Generate ExternCall for canvas.fillRect self.emit_instruction(MirInstruction::ExternCall { dst: None, // canvas.fillRect is void iface_name: "env.canvas".to_string(), method_name: "fillRect".to_string(), args: arg_values, effects: EffectMask::IO, // Canvas operations are I/O })?; // Return void value let void_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_id, value: ConstValue::Void, })?; return Ok(void_id); }, ("canvas", "fillText") => { // Generate ExternCall for canvas.fillText self.emit_instruction(MirInstruction::ExternCall { dst: None, // canvas.fillText is void iface_name: "env.canvas".to_string(), method_name: "fillText".to_string(), args: arg_values, effects: EffectMask::IO, // Canvas operations are I/O })?; // Return void value let void_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_id, value: ConstValue::Void, })?; return Ok(void_id); }, _ => { // Regular method call - continue with BoxCall } } } // Emit a BoxCall instruction for regular method calls self.emit_instruction(MirInstruction::BoxCall { dst: Some(result_id), box_val: object_value, method, args: arg_values, effects: EffectMask::READ.add(Effect::ReadHeap), // Method calls may have side effects })?; Ok(result_id) } /// Build from expression: from Parent.method(arguments) fn build_from_expression(&mut self, parent: String, method: String, arguments: Vec) -> Result { // Build argument expressions let mut arg_values = Vec::new(); for arg in arguments { arg_values.push(self.build_expression(arg)?); } // Create a synthetic "parent reference" value let parent_value = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: parent_value, value: ConstValue::String(parent), })?; // Create result value let result_id = self.value_gen.next(); // Emit a BoxCall instruction for delegation self.emit_instruction(MirInstruction::BoxCall { dst: Some(result_id), box_val: parent_value, method, args: arg_values, effects: EffectMask::READ.add(Effect::ReadHeap), })?; Ok(result_id) } /// Build box declaration: box Name { fields... methods... } fn build_box_declaration(&mut self, name: String, methods: std::collections::HashMap, fields: Vec) -> Result<(), String> { // For Phase 8.4, we'll emit metadata instructions to register the box type // In a full implementation, this would register type information for later use // Create a type registration constant let type_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: type_id, value: ConstValue::String(format!("__box_type_{}", name)), })?; // For each field, emit metadata about the field for field in fields { let field_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: field_id, value: ConstValue::String(format!("__field_{}_{}", name, field)), })?; } // Process methods - now methods is a HashMap for (method_name, method_ast) in methods { if let ASTNode::FunctionDeclaration { .. } = method_ast { let method_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: method_id, value: ConstValue::String(format!("__method_{}_{}", name, method_name)), })?; } } Ok(()) } } /// Helper enum for binary operator classification #[derive(Debug)] enum BinaryOpType { Arithmetic(BinaryOp), Comparison(CompareOp), } impl Default for MirBuilder { fn default() -> Self { Self::new() } } #[cfg(test)] mod tests { use super::*; use crate::ast::{ASTNode, LiteralValue, Span}; #[test] fn test_literal_building() { let mut builder = MirBuilder::new(); let ast = ASTNode::Literal { value: LiteralValue::Integer(42), span: Span::unknown(), }; let result = builder.build_module(ast); assert!(result.is_ok()); let module = result.unwrap(); assert_eq!(module.function_names().len(), 1); assert!(module.get_function("main").is_some()); } #[test] fn test_binary_op_building() { let mut builder = MirBuilder::new(); let ast = ASTNode::BinaryOp { left: Box::new(ASTNode::Literal { value: LiteralValue::Integer(10), span: Span::unknown(), }), operator: BinaryOperator::Add, right: Box::new(ASTNode::Literal { value: LiteralValue::Integer(32), span: Span::unknown(), }), span: Span::unknown(), }; let result = builder.build_module(ast); assert!(result.is_ok()); let module = result.unwrap(); let function = module.get_function("main").unwrap(); // Should have constants and binary operation let stats = function.stats(); assert!(stats.instruction_count >= 3); // 2 constants + 1 binop + 1 return } #[test] fn test_if_statement_building() { let mut builder = MirBuilder::new(); // Adapt test to current AST: If with statement bodies let ast = ASTNode::If { condition: Box::new(ASTNode::Literal { value: LiteralValue::Bool(true), span: Span::unknown(), }), then_body: vec![ASTNode::Literal { value: LiteralValue::Integer(1), span: Span::unknown(), }], else_body: Some(vec![ASTNode::Literal { value: LiteralValue::Integer(2), span: Span::unknown(), }]), span: Span::unknown(), }; let result = builder.build_module(ast); assert!(result.is_ok()); let module = result.unwrap(); let function = module.get_function("main").unwrap(); // Should have multiple blocks for if/then/else/merge assert!(function.blocks.len() >= 3); // Should have phi function in merge block let stats = function.stats(); assert!(stats.phi_count >= 1); } }