//! Nyash Net Plugin (HTTP stub) - BID-FFI v1 //! Provides HttpServerBox (singleton), HttpRequestBox, HttpResponseBox, HttpClientBox //! This is a pure in-process stub (no real sockets), suitable for E2E of BoxRef args/returns. use once_cell::sync::Lazy; use std::collections::{HashMap, VecDeque}; use std::sync::{Mutex, Arc, atomic::{AtomicBool, AtomicU32, Ordering}}; use std::net::{TcpListener, TcpStream}; use std::io::{Read, Write}; use std::time::Duration; use std::io::Write as IoWrite; // ===== Simple logger (enabled when NYASH_NET_LOG=1) ===== static LOG_ON: Lazy = Lazy::new(|| std::env::var("NYASH_NET_LOG").unwrap_or_default() == "1"); static LOG_PATH: Lazy = Lazy::new(|| std::env::var("NYASH_NET_LOG_FILE").unwrap_or_else(|_| "net_plugin.log".to_string())); static LOG_MTX: Lazy> = Lazy::new(|| Mutex::new(())); fn net_log(msg: &str) { if !*LOG_ON { return; } // Always mirror to stderr for visibility eprintln!("[net] {}", msg); let _g = LOG_MTX.lock().unwrap(); if let Ok(mut f) = std::fs::OpenOptions::new().create(true).append(true).open(&*LOG_PATH) { let _ = writeln!(f, "[{:?}] {}", std::time::SystemTime::now(), msg); } } macro_rules! netlog { ($($arg:tt)*) => {{ let s = format!($($arg)*); net_log(&s); }} } // Error codes const OK: i32 = 0; const E_SHORT: i32 = -1; const E_INV_TYPE: i32 = -2; const E_INV_METHOD: i32 = -3; const E_INV_ARGS: i32 = -4; const E_ERR: i32 = -5; const E_INV_HANDLE: i32 = -8; // Type IDs const T_SERVER: u32 = 20; const T_REQUEST: u32 = 21; const T_RESPONSE: u32 = 22; const T_CLIENT: u32 = 23; // Socket const T_SOCK_SERVER: u32 = 30; const T_SOCK_CONN: u32 = 31; const T_SOCK_CLIENT: u32 = 32; // Methods const M_BIRTH: u32 = 0; // Server const M_SERVER_START: u32 = 1; const M_SERVER_STOP: u32 = 2; const M_SERVER_ACCEPT: u32 = 3; // -> Handle(Request) // Request const M_REQ_PATH: u32 = 1; // -> String const M_REQ_READ_BODY: u32 = 2; // -> Bytes (optional) const M_REQ_RESPOND: u32 = 3; // arg: Handle(Response) // Response const M_RESP_SET_STATUS: u32 = 1; // arg: i32 const M_RESP_SET_HEADER: u32 = 2; // args: name, value (string) const M_RESP_WRITE: u32 = 3; // arg: bytes/string const M_RESP_READ_BODY: u32 = 4; // -> Bytes const M_RESP_GET_STATUS: u32 = 5; // -> i32 const M_RESP_GET_HEADER: u32 = 6; // arg: name -> string (or empty) // Client const M_CLIENT_GET: u32 = 1; // arg: url -> Handle(Response) const M_CLIENT_POST: u32 = 2; // args: url, body(bytes/string) -> Handle(Response) // Socket Server const M_SRV_BIRTH: u32 = 0; const M_SRV_START: u32 = 1; // port const M_SRV_STOP: u32 = 2; const M_SRV_ACCEPT: u32 = 3; // -> Handle(T_SOCK_CONN) const M_SRV_ACCEPT_TIMEOUT: u32 = 4; // ms -> Handle(T_SOCK_CONN) or void // Socket Client const M_SC_BIRTH: u32 = 0; const M_SC_CONNECT: u32 = 1; // host, port -> Handle(T_SOCK_CONN) // Socket Conn const M_CONN_BIRTH: u32 = 0; const M_CONN_SEND: u32 = 1; // bytes/string -> void const M_CONN_RECV: u32 = 2; // -> bytes const M_CONN_CLOSE: u32 = 3; // -> void const M_CONN_RECV_TIMEOUT: u32 = 4; // ms -> bytes (empty if timeout) // Global State static SERVER_INSTANCES: Lazy>> = Lazy::new(|| Mutex::new(HashMap::new())); static SERVER_START_SEQ: AtomicU32 = AtomicU32::new(1); static ACTIVE_SERVER_ID: Lazy>> = Lazy::new(|| Mutex::new(None)); static LAST_ACCEPTED_REQ: Lazy>> = Lazy::new(|| Mutex::new(None)); static REQUESTS: Lazy>> = Lazy::new(|| Mutex::new(HashMap::new())); static RESPONSES: Lazy>> = Lazy::new(|| Mutex::new(HashMap::new())); static CLIENTS: Lazy>> = Lazy::new(|| Mutex::new(HashMap::new())); static SERVER_ID: AtomicU32 = AtomicU32::new(1); static REQUEST_ID: AtomicU32 = AtomicU32::new(1); static RESPONSE_ID: AtomicU32 = AtomicU32::new(1); static CLIENT_ID: AtomicU32 = AtomicU32::new(1); static SOCK_SERVER_ID: AtomicU32 = AtomicU32::new(1); static SOCK_CONN_ID: AtomicU32 = AtomicU32::new(1); static SOCK_CLIENT_ID: AtomicU32 = AtomicU32::new(1); struct ServerState { running: Arc, port: i32, pending: Arc>>, // queue of request ids handle: Mutex>>, start_seq: u32, } struct RequestState { path: String, body: Vec, response_id: Option, // For HTTP-over-TCP server: map to an active accepted socket to respond on server_conn_id: Option, responded: bool, } struct ResponseState { status: i32, headers: HashMap, body: Vec, // For HTTP-over-TCP client: associated socket connection id to read from client_conn_id: Option, parsed: bool, } struct ClientState; // Socket types struct SockServerState { running: Arc, pending: Arc>>, handle: Mutex>>, } struct SockConnState { stream: Mutex, } struct SockClientState; #[no_mangle] pub extern "C" fn nyash_plugin_abi() -> u32 { 1 } #[no_mangle] pub extern "C" fn nyash_plugin_init() -> i32 { // Force initialize logging let _ = *LOG_ON; let _ = &*LOG_PATH; netlog!("Net plugin initialized, LOG_ON={}, LOG_PATH={}", *LOG_ON, *LOG_PATH); eprintln!("Net plugin: LOG_ON={}, LOG_PATH={}", *LOG_ON, *LOG_PATH); OK } #[no_mangle] pub extern "C" fn nyash_plugin_invoke( type_id: u32, method_id: u32, instance_id: u32, args: *const u8, args_len: usize, result: *mut u8, result_len: *mut usize, ) -> i32 { unsafe { match type_id { T_SERVER => server_invoke(method_id, instance_id, args, args_len, result, result_len), T_REQUEST => request_invoke(method_id, instance_id, args, args_len, result, result_len), T_RESPONSE => response_invoke(method_id, instance_id, args, args_len, result, result_len), T_CLIENT => client_invoke(method_id, instance_id, args, args_len, result, result_len), T_SOCK_SERVER => sock_server_invoke(method_id, instance_id, args, args_len, result, result_len), T_SOCK_CLIENT => sock_client_invoke(method_id, instance_id, args, args_len, result, result_len), T_SOCK_CONN => sock_conn_invoke(method_id, instance_id, args, args_len, result, result_len), _ => E_INV_TYPE, } } } unsafe fn server_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 { match m { M_BIRTH => { let id = SERVER_ID.fetch_add(1, Ordering::Relaxed); SERVER_INSTANCES.lock().unwrap().insert(id, ServerState { running: Arc::new(AtomicBool::new(false)), port: 0, pending: Arc::new(Mutex::new(VecDeque::new())), handle: Mutex::new(None), start_seq: 0, }); write_u32(id, res, res_len) } M_SERVER_START => { // args: TLV string/int (port) let port = tlv_parse_i32(slice(args, args_len)).unwrap_or(0); if let Some(s) = SERVER_INSTANCES.lock().unwrap().get_mut(&id) { s.port = port; s.start_seq = SERVER_START_SEQ.fetch_add(1, Ordering::Relaxed); let running = s.running.clone(); let pending = s.pending.clone(); running.store(true, Ordering::SeqCst); // Bind listener synchronously to avoid race with client connect let addr = format!("127.0.0.1:{}", port); let listener = match TcpListener::bind(&addr) { Ok(l) => { netlog!("http:listener bound {}", addr); l }, Err(e) => { netlog!("http:bind error {} err={:?}", addr, e); running.store(false, Ordering::SeqCst); return write_tlv_void(res, res_len); } }; // Spawn HTTP listener thread (real TCP) let server_id_copy = id; let handle = std::thread::spawn(move || { let _ = listener.set_nonblocking(true); loop { if !running.load(Ordering::SeqCst) { break; } match listener.accept() { Ok((mut stream, _)) => { // Parse minimal HTTP request (GET/POST) let _ = stream.set_read_timeout(Some(Duration::from_millis(2000))); if let Some((path, body, resp_hint)) = read_http_request(&mut stream) { // Store stream for later respond() let conn_id = SOCK_CONN_ID.fetch_add(1, Ordering::Relaxed); SOCK_CONNS.lock().unwrap().insert(conn_id, SockConnState { stream: Mutex::new(stream) }); let req_id = REQUEST_ID.fetch_add(1, Ordering::Relaxed); REQUESTS.lock().unwrap().insert(req_id, RequestState { path, body, response_id: resp_hint, server_conn_id: Some(conn_id), responded: false }); if let Some(h) = resp_hint { netlog!("http:accept linked resp_id hint={} for req_id={} conn_id={}", h, req_id, conn_id); } pending.lock().unwrap().push_back(req_id); } else { // Malformed; drop connection } } Err(_) => { std::thread::sleep(Duration::from_millis(10)); } } } }); *s.handle.lock().unwrap() = Some(handle); } // mark active server *ACTIVE_SERVER_ID.lock().unwrap() = Some(id); write_tlv_void(res, res_len) } M_SERVER_STOP => { if let Some(s) = SERVER_INSTANCES.lock().unwrap().get_mut(&id) { s.running.store(false, Ordering::SeqCst); if let Some(h) = s.handle.lock().unwrap().take() { let _ = h.join(); } } // clear active if this server was active let mut active = ACTIVE_SERVER_ID.lock().unwrap(); if active.map(|v| v == id).unwrap_or(false) { *active = None; } write_tlv_void(res, res_len) } M_SERVER_ACCEPT => { // wait up to ~5000ms for a request to arrive for _ in 0..1000 { // Prefer TCP-backed requests (server_conn_id=Some) over stub ones if let Some(req_id) = { let mut map = SERVER_INSTANCES.lock().unwrap(); if let Some(s) = map.get_mut(&id) { let mut q = s.pending.lock().unwrap(); // Find first index with TCP backing let mut chosen: Option = None; for i in 0..q.len() { if let Some(rid) = q.get(i).copied() { if let Some(rq) = REQUESTS.lock().unwrap().get(&rid) { if rq.server_conn_id.is_some() { chosen = Some(i); break; } } } } if let Some(idx) = chosen { q.remove(idx) } else { q.pop_front() } } else { None } } { netlog!("server.accept: return req_id={} srv_id={}", req_id, id); *LAST_ACCEPTED_REQ.lock().unwrap() = Some(req_id); return write_tlv_handle(T_REQUEST, req_id, res, res_len); } std::thread::sleep(Duration::from_millis(5)); } write_tlv_void(res, res_len) } _ => E_INV_METHOD, } } unsafe fn request_invoke(m: u32, id: u32, _args: *const u8, _args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 { match m { M_BIRTH => { let id = REQUEST_ID.fetch_add(1, Ordering::Relaxed); REQUESTS.lock().unwrap().insert(id, RequestState { path: String::new(), body: vec![], response_id: None, server_conn_id: None, responded: false }); write_u32(id, res, res_len) } M_REQ_PATH => { if let Some(rq) = REQUESTS.lock().unwrap().get(&id) { write_tlv_string(&rq.path, res, res_len) } else { E_INV_HANDLE } } M_REQ_READ_BODY => { if let Some(rq) = REQUESTS.lock().unwrap().get(&id) { write_tlv_bytes(&rq.body, res, res_len) } else { E_INV_HANDLE } } M_REQ_RESPOND => { // args: TLV Handle(Response) let (t, provided_resp_id) = tlv_parse_handle(slice(_args, _args_len)).map_err(|_| ()).or(Err(())).unwrap_or((0,0)); if t != T_RESPONSE { return E_INV_ARGS; } // Acquire request let mut rq_map = REQUESTS.lock().unwrap(); if let Some(rq) = rq_map.get_mut(&id) { netlog!( "Request.respond: req_id={} provided_resp_id={} server_conn_id={:?} response_id_hint={:?}", id, provided_resp_id, rq.server_conn_id, rq.response_id ); // If request is backed by a real socket, write HTTP over that socket if let Some(conn_id) = rq.server_conn_id { drop(rq_map); // Read response content from provided response handle let (status, headers, body) = { let resp_map = RESPONSES.lock().unwrap(); if let Some(src) = resp_map.get(&provided_resp_id) { netlog!("Request.respond: Reading response id={}, status={}, body_len={}", provided_resp_id, src.status, src.body.len()); (src.status, src.headers.clone(), src.body.clone()) } else { netlog!("Request.respond: Response id={} not found!", provided_resp_id); return E_INV_HANDLE } }; // Build minimal HTTP/1.1 response let reason = match status { 200 => "OK", 201 => "Created", 204 => "No Content", 400 => "Bad Request", 404 => "Not Found", 500 => "Internal Server Error", _ => "OK" }; let mut buf = Vec::new(); buf.extend_from_slice(format!("HTTP/1.1 {} {}\r\n", status, reason).as_bytes()); let mut has_len = false; for (k,v) in &headers { if k.eq_ignore_ascii_case("Content-Length") { has_len = true; } buf.extend_from_slice(format!("{}: {}\r\n", k, v).as_bytes()); } if !has_len { buf.extend_from_slice(format!("Content-Length: {}\r\n", body.len()).as_bytes()); } buf.extend_from_slice(b"Connection: close\r\n"); buf.extend_from_slice(b"\r\n"); buf.extend_from_slice(&body); // Write and close netlog!("Request.respond: Sending HTTP response, buf_len={}", buf.len()); if let Some(conn) = SOCK_CONNS.lock().unwrap().remove(&conn_id) { if let Ok(mut s) = conn.stream.lock() { let _ = s.write_all(&buf); let _ = s.flush(); netlog!("Request.respond: HTTP response sent to socket conn_id={}", conn_id); } } else { netlog!("Request.respond: Socket conn_id={} not found!", conn_id); } // Also mirror to paired client Response handle to avoid race on immediate read if let Some(target_id) = { let rq_map2 = REQUESTS.lock().unwrap(); rq_map2.get(&id).and_then(|rq2| rq2.response_id) } { let mut resp_map = RESPONSES.lock().unwrap(); let dst = resp_map.entry(target_id).or_insert(ResponseState { status: 200, headers: HashMap::new(), body: vec![], client_conn_id: None, parsed: true }); dst.status = status; dst.headers = headers.clone(); dst.body = body.clone(); netlog!("Request.respond: mirrored client handle id={} body_len={} headers={} status={}", target_id, dst.body.len(), dst.headers.len(), dst.status); } // mark responded { let mut rq_map3 = REQUESTS.lock().unwrap(); if let Some(rq3) = rq_map3.get_mut(&id) { rq3.responded = true; } } return write_tlv_void(res, res_len); } // Not backed by a socket: attempt reroute to last accepted or latest TCP-backed unresponded request drop(rq_map); let candidate_req = { if let Some(last_id) = *LAST_ACCEPTED_REQ.lock().unwrap() { if let Some(r) = REQUESTS.lock().unwrap().get(&last_id) { if r.server_conn_id.is_some() && !r.responded { Some(last_id) } else { None } } else { None } } else { None } }.or_else(|| { REQUESTS.lock().unwrap().iter() .filter_map(|(rid, rqs)| if rqs.server_conn_id.is_some() && !rqs.responded { Some(*rid) } else { None }) .max() }); if let Some(target_req_id) = candidate_req { let (conn_id_alt, resp_hint_alt) = { let map = REQUESTS.lock().unwrap(); let r = map.get(&target_req_id).unwrap(); (r.server_conn_id.unwrap(), r.response_id) }; let (status, headers, body) = { let resp_map = RESPONSES.lock().unwrap(); if let Some(src) = resp_map.get(&provided_resp_id) { (src.status, src.headers.clone(), src.body.clone()) } else { return E_INV_HANDLE } }; let reason = match status { 200 => "OK", 201 => "Created", 204 => "No Content", 400 => "Bad Request", 404 => "Not Found", 500 => "Internal Server Error", _ => "OK" }; let mut buf = Vec::new(); buf.extend_from_slice(format!("HTTP/1.1 {} {}\r\n", status, reason).as_bytes()); let mut has_len = false; for (k,v) in &headers { if k.eq_ignore_ascii_case("Content-Length") { has_len = true; } buf.extend_from_slice(format!("{}: {}\r\n", k, v).as_bytes()); } if !has_len { buf.extend_from_slice(format!("Content-Length: {}\r\n", body.len()).as_bytes()); } buf.extend_from_slice(b"Connection: close\r\n\r\n"); buf.extend_from_slice(&body); netlog!("Request.respond: reroute TCP send via req_id={} conn_id={}", target_req_id, conn_id_alt); if let Some(conn) = SOCK_CONNS.lock().unwrap().remove(&conn_id_alt) { if let Ok(mut s) = conn.stream.lock() { let _ = s.write_all(&buf); let _ = s.flush(); } } if let Some(target_id) = resp_hint_alt { let mut resp_map = RESPONSES.lock().unwrap(); let dst = resp_map.entry(target_id).or_insert(ResponseState { status: 200, headers: HashMap::new(), body: vec![], client_conn_id: None, parsed: true }); dst.status = status; dst.headers = headers.clone(); dst.body = body.clone(); netlog!("Request.respond: mirrored client handle id={} body_len={} headers={} status={}", target_id, dst.body.len(), dst.headers.len(), dst.status); } if let Some(rq4) = REQUESTS.lock().unwrap().get_mut(&target_req_id) { rq4.responded = true; } return write_tlv_void(res, res_len); } netlog!("Request.respond: no suitable TCP-backed request found for reroute; invalid handle"); return E_INV_HANDLE; } E_INV_HANDLE } _ => E_INV_METHOD, } } unsafe fn response_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 { match m { M_BIRTH => { let id = RESPONSE_ID.fetch_add(1, Ordering::Relaxed); RESPONSES.lock().unwrap().insert(id, ResponseState { status: 200, headers: HashMap::new(), body: vec![], client_conn_id: None, parsed: false }); netlog!("Response.birth: new id={}", id); write_u32(id, res, res_len) } M_RESP_SET_STATUS => { let code = tlv_parse_i32(slice(args, args_len)).unwrap_or(200); if let Some(rp) = RESPONSES.lock().unwrap().get_mut(&id) { rp.status = code; } write_tlv_void(res, res_len) } M_RESP_SET_HEADER => { if let Ok((name, value)) = tlv_parse_two_strings(slice(args, args_len)) { if let Some(rp) = RESPONSES.lock().unwrap().get_mut(&id) { rp.headers.insert(name, value); } return write_tlv_void(res, res_len); } E_INV_ARGS } M_RESP_WRITE => { // Accept String or Bytes let bytes = tlv_parse_bytes(slice(args, args_len)).unwrap_or_default(); netlog!("HttpResponse.write: id={} bytes_len={}", id, bytes.len()); if let Some(rp) = RESPONSES.lock().unwrap().get_mut(&id) { rp.body.extend_from_slice(&bytes); netlog!("HttpResponse.write: body now has {} bytes", rp.body.len()); } write_tlv_void(res, res_len) } M_RESP_READ_BODY => { netlog!("HttpResponse.readBody: enter id={}", id); // If bound to a client connection, lazily read and parse (with short retries) for _ in 0..50 { let need_parse = { if let Some(rp) = RESPONSES.lock().unwrap().get(&id) { rp.client_conn_id } else { return E_INV_HANDLE; } }; if let Some(conn_id) = need_parse { parse_client_response_into(id, conn_id); std::thread::sleep(Duration::from_millis(5)); } else { break; } } if let Some(rp) = RESPONSES.lock().unwrap().get(&id) { netlog!("HttpResponse.readBody: id={} body_len={}", id, rp.body.len()); write_tlv_bytes(&rp.body, res, res_len) } else { E_INV_HANDLE } } M_RESP_GET_STATUS => { for _ in 0..50 { let need_parse = { if let Some(rp) = RESPONSES.lock().unwrap().get(&id) { rp.client_conn_id } else { return E_INV_HANDLE; } }; if let Some(conn_id) = need_parse { parse_client_response_into(id, conn_id); std::thread::sleep(Duration::from_millis(5)); } else { break; } } if let Some(rp) = RESPONSES.lock().unwrap().get(&id) { write_tlv_i32(rp.status, res, res_len) } else { E_INV_HANDLE } } M_RESP_GET_HEADER => { if let Ok(name) = tlv_parse_string(slice(args, args_len)) { for _ in 0..50 { let need_parse = { if let Some(rp) = RESPONSES.lock().unwrap().get(&id) { rp.client_conn_id } else { return E_INV_HANDLE; } }; if let Some(conn_id) = need_parse { parse_client_response_into(id, conn_id); std::thread::sleep(Duration::from_millis(5)); } else { break; } } if let Some(rp) = RESPONSES.lock().unwrap().get(&id) { let v = rp.headers.get(&name).cloned().unwrap_or_default(); return write_tlv_string(&v, res, res_len); } else { return E_INV_HANDLE; } } E_INV_ARGS } _ => E_INV_METHOD, } } unsafe fn client_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 { match m { M_BIRTH => { let id = CLIENT_ID.fetch_add(1, Ordering::Relaxed); CLIENTS.lock().unwrap().insert(id, ClientState); write_u32(id, res, res_len) } M_CLIENT_GET => { // args: TLV String(url) let url = tlv_parse_string(slice(args, args_len)).unwrap_or_default(); let port = parse_port(&url).unwrap_or(80); let host = parse_host(&url).unwrap_or_else(|| "127.0.0.1".to_string()); let path = parse_path(&url); // Create client response handle first, so we can include it in header let resp_id = RESPONSE_ID.fetch_add(1, Ordering::Relaxed); let (_h, _p, req_bytes) = build_http_request("GET", &url, None, resp_id); // Try TCP connect (best effort) let mut tcp_ok = false; if let Ok(mut stream) = TcpStream::connect(format!("{}:{}", host, port)) { let _ = stream.write_all(&req_bytes); let _ = stream.flush(); let conn_id = SOCK_CONN_ID.fetch_add(1, Ordering::Relaxed); SOCK_CONNS.lock().unwrap().insert(conn_id, SockConnState { stream: Mutex::new(stream) }); // Map to server_id by port if available let server_id_for_port = { let servers = SERVER_INSTANCES.lock().unwrap(); servers.iter().find(|(_, s)| s.port == port).map(|(sid, _)| *sid) }; RESPONSES.lock().unwrap().insert(resp_id, ResponseState { status: 0, headers: HashMap::new(), body: vec![], client_conn_id: Some(conn_id), parsed: false }); tcp_ok = true; netlog!("client.get: url={} resp_id={} tcp_ok=true conn_id={}", url, resp_id, conn_id); } else { let server_id_for_port = { let servers = SERVER_INSTANCES.lock().unwrap(); servers.iter().find(|(_, s)| s.port == port).map(|(sid, _)| *sid) }; RESPONSES.lock().unwrap().insert(resp_id, ResponseState { status: 0, headers: HashMap::new(), body: vec![], client_conn_id: None, parsed: false }); netlog!("client.get: url={} resp_id={} tcp_ok=false", url, resp_id); } // No stub enqueue in TCP-only design write_tlv_handle(T_RESPONSE, resp_id, res, res_len) } M_CLIENT_POST => { // args: TLV String(url), Bytes body let data = slice(args, args_len); let (_, argc, mut pos) = tlv_parse_header(data).map_err(|_| ()).or(Err(())).unwrap_or((1,0,4)); if argc < 2 { return E_INV_ARGS; } let (_t1, s1, p1) = tlv_parse_entry_hdr(data, pos).map_err(|_| ()).or(Err(())).unwrap_or((0,0,0)); if data[pos] != 6 { return E_INV_ARGS; } let url = std::str::from_utf8(&data[p1..p1+s1]).map_err(|_| ()).or(Err(())) .unwrap_or("").to_string(); pos = p1 + s1; let (t2, s2, p2) = tlv_parse_entry_hdr(data, pos).map_err(|_| ()).or(Err(())).unwrap_or((0,0,0)); if t2 != 6 && t2 != 7 { return E_INV_ARGS; } let body = data[p2..p2+s2].to_vec(); let port = parse_port(&url).unwrap_or(80); let host = parse_host(&url).unwrap_or_else(|| "127.0.0.1".to_string()); let path = parse_path(&url); let body_len = body.len(); // Create client response handle let resp_id = RESPONSE_ID.fetch_add(1, Ordering::Relaxed); let (_h, _p, req_bytes) = build_http_request("POST", &url, Some(&body), resp_id); let mut tcp_ok = false; if let Ok(mut stream) = TcpStream::connect(format!("{}:{}", host, port)) { let _ = stream.write_all(&req_bytes); let _ = stream.flush(); let conn_id = SOCK_CONN_ID.fetch_add(1, Ordering::Relaxed); SOCK_CONNS.lock().unwrap().insert(conn_id, SockConnState { stream: Mutex::new(stream) }); let server_id_for_port = { let servers = SERVER_INSTANCES.lock().unwrap(); servers.iter().find(|(_, s)| s.port == port).map(|(sid, _)| *sid) }; RESPONSES.lock().unwrap().insert(resp_id, ResponseState { status: 0, headers: HashMap::new(), body: vec![], client_conn_id: Some(conn_id), parsed: false }); tcp_ok = true; netlog!("client.post: url={} resp_id={} tcp_ok=true conn_id={} body_len={}", url, resp_id, conn_id, body.len()); } else { let server_id_for_port = { let servers = SERVER_INSTANCES.lock().unwrap(); servers.iter().find(|(_, s)| s.port == port).map(|(sid, _)| *sid) }; RESPONSES.lock().unwrap().insert(resp_id, ResponseState { status: 0, headers: HashMap::new(), body: vec![], client_conn_id: None, parsed: false }); netlog!("client.post: url={} resp_id={} tcp_ok=false body_len={}", url, resp_id, body.len()); } // No stub enqueue in TCP-only design write_tlv_handle(T_RESPONSE, resp_id, res, res_len) } _ => E_INV_METHOD, } } fn parse_path(url: &str) -> String { // Robust-ish path extraction: // - http://host:port/path -> "/path" // - https://host/path -> "/path" // - /relative -> as-is // - otherwise -> "/" if url.starts_with('/') { return url.to_string(); } if let Some(scheme_pos) = url.find("//") { let after_scheme = &url[scheme_pos+2..]; if let Some(slash) = after_scheme.find('/') { return after_scheme[slash..].to_string(); } else { return "/".to_string(); } } "/".to_string() } fn parse_port(url: &str) -> Option { // match patterns like http://host:PORT/ or :PORT/ if let Some(pat) = url.split("//").nth(1) { if let Some(after_host) = pat.split('/').next() { if let Some(colon) = after_host.rfind(':') { return after_host[colon+1..].parse::().ok(); } } } None } // ===== Helpers ===== unsafe fn slice<'a>(p: *const u8, len: usize) -> &'a [u8] { std::slice::from_raw_parts(p, len) } fn write_u32(v: u32, res: *mut u8, res_len: *mut usize) -> i32 { unsafe { if res_len.is_null() { return E_INV_ARGS; } if res.is_null() || *res_len < 4 { *res_len = 4; return E_SHORT; } let b = v.to_le_bytes(); std::ptr::copy_nonoverlapping(b.as_ptr(), res, 4); *res_len = 4; } OK } fn write_tlv_result(payloads: &[(u8, &[u8])], res: *mut u8, res_len: *mut usize) -> i32 { if res_len.is_null() { return E_INV_ARGS; } let mut buf = Vec::with_capacity(4 + payloads.iter().map(|(_,p)| 4 + p.len()).sum::()); buf.extend_from_slice(&1u16.to_le_bytes()); buf.extend_from_slice(&(payloads.len() as u16).to_le_bytes()); for (tag, p) in payloads { buf.push(*tag); buf.push(0); buf.extend_from_slice(&(p.len() as u16).to_le_bytes()); buf.extend_from_slice(p); } unsafe { let need = buf.len(); if res.is_null() || *res_len < need { *res_len = need; return E_SHORT; } std::ptr::copy_nonoverlapping(buf.as_ptr(), res, need); *res_len = need; } OK } fn write_tlv_void(res: *mut u8, res_len: *mut usize) -> i32 { write_tlv_result(&[(9u8, &[])], res, res_len) } fn write_tlv_string(s: &str, res: *mut u8, res_len: *mut usize) -> i32 { write_tlv_result(&[(6u8, s.as_bytes())], res, res_len) } fn write_tlv_bytes(b: &[u8], res: *mut u8, res_len: *mut usize) -> i32 { write_tlv_result(&[(7u8, b)], res, res_len) } fn write_tlv_i32(v: i32, res: *mut u8, res_len: *mut usize) -> i32 { write_tlv_result(&[(2u8, &v.to_le_bytes())], res, res_len) } fn write_tlv_handle(t: u32, id: u32, res: *mut u8, res_len: *mut usize) -> i32 { let mut payload = [0u8;8]; payload[0..4].copy_from_slice(&t.to_le_bytes()); payload[4..8].copy_from_slice(&id.to_le_bytes()); write_tlv_result(&[(8u8, &payload)], res, res_len) } fn tlv_parse_header(data: &[u8]) -> Result<(u16,u16,usize), ()> { if data.len() < 4 { return Err(()); } let ver = u16::from_le_bytes([data[0], data[1]]); let argc = u16::from_le_bytes([data[2], data[3]]); if ver != 1 { return Err(()); } Ok((ver, argc, 4)) } fn tlv_parse_string(data: &[u8]) -> Result { let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 1 { return Err(()); } let (tag, size, p) = tlv_parse_entry_hdr(data, pos)?; if tag != 6 { return Err(()); } Ok(std::str::from_utf8(&data[p..p+size]).map_err(|_| ())?.to_string()) } fn tlv_parse_two_strings(data: &[u8]) -> Result<(String,String), ()> { let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 2 { return Err(()); } let (tag1, size1, p1) = tlv_parse_entry_hdr(data, pos)?; if tag1 != 6 { return Err(()); } let s1 = std::str::from_utf8(&data[p1..p1+size1]).map_err(|_| ())?.to_string(); pos = p1+size1; let (tag2, size2, p2) = tlv_parse_entry_hdr(data, pos)?; if tag2 != 6 { return Err(()); } let s2 = std::str::from_utf8(&data[p2..p2+size2]).map_err(|_| ())?.to_string(); Ok((s1,s2)) } fn tlv_parse_bytes(data: &[u8]) -> Result, ()> { let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 1 { return Err(()); } let (tag, size, p) = tlv_parse_entry_hdr(data, pos)?; if tag != 6 && tag != 7 { return Err(()); } Ok(data[p..p+size].to_vec()) } fn tlv_parse_i32(data: &[u8]) -> Result { let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 1 { return Err(()); } let (tag, size, p) = tlv_parse_entry_hdr(data, pos)?; match (tag, size) { (2, 4) => { let mut b=[0u8;4]; b.copy_from_slice(&data[p..p+4]); Ok(i32::from_le_bytes(b)) } (5, 8) => { // accept i64 let mut b=[0u8;8]; b.copy_from_slice(&data[p..p+8]); Ok(i64::from_le_bytes(b) as i32) } _ => Err(()) } } fn tlv_parse_handle(data: &[u8]) -> Result<(u32,u32), ()> { let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 1 { return Err(()); } let (tag, size, p) = tlv_parse_entry_hdr(data, pos)?; if tag != 8 || size != 8 { return Err(()); } let mut t = [0u8;4]; let mut i = [0u8;4]; t.copy_from_slice(&data[p..p+4]); i.copy_from_slice(&data[p+4..p+8]); Ok((u32::from_le_bytes(t), u32::from_le_bytes(i))) } fn tlv_parse_entry_hdr(data: &[u8], pos: usize) -> Result<(u8,usize,usize), ()> { if pos+4 > data.len() { return Err(()); } let tag = data[pos]; let _rsv = data[pos+1]; let size = u16::from_le_bytes([data[pos+2], data[pos+3]]) as usize; let p = pos+4; if p+size > data.len() { return Err(()); } Ok((tag,size,p)) } // ===== HTTP helpers ===== fn parse_host(url: &str) -> Option { // http://host[:port]/... if let Some(rest) = url.split("//").nth(1) { let host_port = rest.split('/').next().unwrap_or(""); let host = host_port.split(':').next().unwrap_or(""); if !host.is_empty() { return Some(host.to_string()); } } None } fn build_http_request(method: &str, url: &str, body: Option<&[u8]>, resp_id: u32) -> (String, String, Vec) { let host = parse_host(url).unwrap_or_else(|| "127.0.0.1".to_string()); let path = parse_path(url); let mut buf = Vec::new(); buf.extend_from_slice(format!("{} {} HTTP/1.1\r\n", method, &path).as_bytes()); buf.extend_from_slice(format!("Host: {}\r\n", host).as_bytes()); buf.extend_from_slice(b"User-Agent: nyash-net-plugin/0.1\r\n"); // Embed client response handle id so server can mirror buf.extend_from_slice(format!("X-Nyash-Resp-Id: {}\r\n", resp_id).as_bytes()); match body { Some(b) => { buf.extend_from_slice(format!("Content-Length: {}\r\n", b.len()).as_bytes()); buf.extend_from_slice(b"Content-Type: application/octet-stream\r\n"); buf.extend_from_slice(b"Connection: close\r\n\r\n"); buf.extend_from_slice(b); } None => { buf.extend_from_slice(b"Connection: close\r\n\r\n"); } } (host, path, buf) } fn read_http_request(stream: &mut TcpStream) -> Option<(String, Vec, Option)> { let mut buf = Vec::with_capacity(1024); let mut tmp = [0u8; 1024]; // Read until we see CRLFCRLF let header_end; loop { match stream.read(&mut tmp) { Ok(0) => return None, // EOF without finding header end Ok(n) => { buf.extend_from_slice(&tmp[..n]); if let Some(pos) = find_header_end(&buf) { header_end = pos; break; } if buf.len() > 64 * 1024 { return None; } } Err(_) => return None, } } // Parse request line and headers let header = &buf[..header_end]; let after = &buf[header_end+4..]; let header_str = String::from_utf8_lossy(header); let mut lines = header_str.split("\r\n"); let request_line = lines.next().unwrap_or(""); let mut parts = request_line.split_whitespace(); let method = parts.next().unwrap_or(""); let path = parts.next().unwrap_or("/").to_string(); let mut content_length: usize = 0; let mut resp_handle_id: Option = None; for line in lines { if let Some((k,v)) = line.split_once(':') { if k.eq_ignore_ascii_case("Content-Length") { content_length = v.trim().parse().unwrap_or(0); } if k.eq_ignore_ascii_case("X-Nyash-Resp-Id") { resp_handle_id = v.trim().parse::().ok(); } } } let mut body = after.to_vec(); while body.len() < content_length { match stream.read(&mut tmp) { Ok(0) => break, Ok(n) => body.extend_from_slice(&tmp[..n]), Err(_) => break } } if method == "GET" || method == "POST" { Some((path, body, resp_handle_id)) } else { None } } fn find_header_end(buf: &[u8]) -> Option { if buf.len() < 4 { return None; } for i in 0..=buf.len()-4 { if &buf[i..i+4] == b"\r\n\r\n" { return Some(i); } } None } fn parse_client_response_into(resp_id: u32, conn_id: u32) { // Read full response from socket and fill ResponseState let mut status: i32 = 200; let mut headers: HashMap = HashMap::new(); let mut body: Vec = Vec::new(); // Keep the connection until parsing succeeds; do not remove up front let mut should_remove = false; if let Ok(mut map) = SOCK_CONNS.lock() { if let Some(conn) = map.get(&conn_id) { if let Ok(mut s) = conn.stream.lock() { let _ = s.set_read_timeout(Some(Duration::from_millis(4000))); let mut buf = Vec::with_capacity(2048); let mut tmp = [0u8; 2048]; loop { match s.read(&mut tmp) { Ok(0) => { // EOF without header; keep connection for retry return; } Ok(n) => { buf.extend_from_slice(&tmp[..n]); if find_header_end(&buf).is_some() { break; } if buf.len() > 256 * 1024 { break; } } Err(_) => return, } } if let Some(pos) = find_header_end(&buf) { let header = &buf[..pos]; let after = &buf[pos+4..]; // Parse status line and headers let header_str = String::from_utf8_lossy(header); let mut lines = header_str.split("\r\n"); if let Some(status_line) = lines.next() { let mut sp = status_line.split_whitespace(); let _ver = sp.next(); if let Some(code_str) = sp.next() { status = code_str.parse::().unwrap_or(200); } } for line in lines { if let Some((k,v)) = line.split_once(':') { headers.insert(k.trim().to_string(), v.trim().to_string()); } } body.extend_from_slice(after); let need = headers.get("Content-Length").and_then(|v| v.parse::().ok()).unwrap_or(0); while body.len() < need { match s.read(&mut tmp) { Ok(0) => break, Ok(n) => body.extend_from_slice(&tmp[..n]), Err(_) => break } } // Parsing succeeded; mark for removal should_remove = true; } } } if should_remove { map.remove(&conn_id); } } if let Some(rp) = RESPONSES.lock().unwrap().get_mut(&resp_id) { rp.status = status; rp.headers = headers; rp.body = body; rp.parsed = true; rp.client_conn_id = None; } } // ===== Socket implementation ===== static SOCK_SERVERS: Lazy>> = Lazy::new(|| Mutex::new(HashMap::new())); static SOCK_CONNS: Lazy>> = Lazy::new(|| Mutex::new(HashMap::new())); static SOCK_CLIENTS: Lazy>> = Lazy::new(|| Mutex::new(HashMap::new())); unsafe fn sock_server_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 { match m { M_SRV_BIRTH => { netlog!("sock:birth server"); let id = SOCK_SERVER_ID.fetch_add(1, Ordering::Relaxed); SOCK_SERVERS.lock().unwrap().insert(id, SockServerState { running: Arc::new(AtomicBool::new(false)), pending: Arc::new(Mutex::new(VecDeque::new())), handle: Mutex::new(None) }); write_u32(id, res, res_len) } M_SRV_START => { let port = tlv_parse_i32(slice(args, args_len)).unwrap_or(0); netlog!("sock:start server id={} port={}", id, port); if let Some(ss) = SOCK_SERVERS.lock().unwrap().get(&id) { let running = ss.running.clone(); let pending = ss.pending.clone(); running.store(true, Ordering::SeqCst); let handle = std::thread::spawn(move || { let addr = format!("127.0.0.1:{}", port); let listener = TcpListener::bind(addr); if let Ok(listener) = listener { listener.set_nonblocking(true).ok(); while running.load(Ordering::SeqCst) { match listener.accept() { Ok((stream, _)) => { stream.set_nonblocking(false).ok(); let conn_id = SOCK_CONN_ID.fetch_add(1, Ordering::Relaxed); SOCK_CONNS.lock().unwrap().insert(conn_id, SockConnState { stream: Mutex::new(stream) }); netlog!("sock:accept conn_id={}", conn_id); pending.lock().unwrap().push_back(conn_id); } Err(_) => { std::thread::sleep(std::time::Duration::from_millis(10)); } } } netlog!("sock:listener exit port={}", port); } }); *ss.handle.lock().unwrap() = Some(handle); } write_tlv_void(res, res_len) } M_SRV_STOP => { netlog!("sock:stop server id={}", id); if let Some(ss) = SOCK_SERVERS.lock().unwrap().get(&id) { ss.running.store(false, Ordering::SeqCst); if let Some(h) = ss.handle.lock().unwrap().take() { let _ = h.join(); } } write_tlv_void(res, res_len) } M_SRV_ACCEPT => { if let Some(ss) = SOCK_SERVERS.lock().unwrap().get(&id) { // wait up to ~5000ms for _ in 0..1000 { if let Some(cid) = ss.pending.lock().unwrap().pop_front() { netlog!("sock:accept returned conn_id={}", cid); return write_tlv_handle(T_SOCK_CONN, cid, res, res_len); } std::thread::sleep(std::time::Duration::from_millis(5)); } } netlog!("sock:accept timeout id={}", id); write_tlv_void(res, res_len) } M_SRV_ACCEPT_TIMEOUT => { let timeout_ms = tlv_parse_i32(slice(args, args_len)).unwrap_or(0).max(0) as u64; if let Some(ss) = SOCK_SERVERS.lock().unwrap().get(&id) { let deadline = std::time::Instant::now() + Duration::from_millis(timeout_ms); loop { if let Some(cid) = ss.pending.lock().unwrap().pop_front() { netlog!("sock:acceptTimeout returned conn_id={}", cid); return write_tlv_handle(T_SOCK_CONN, cid, res, res_len); } if std::time::Instant::now() >= deadline { break; } std::thread::sleep(Duration::from_millis(5)); } } netlog!("sock:acceptTimeout timeout id={} ms={}", id, timeout_ms); // Signal timeout as error for Result normalization E_ERR } _ => E_INV_METHOD, } } unsafe fn sock_client_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 { match m { M_SC_BIRTH => { let id = SOCK_CLIENT_ID.fetch_add(1, Ordering::Relaxed); SOCK_CLIENTS.lock().unwrap().insert(id, SockClientState); write_u32(id, res, res_len) } M_SC_CONNECT => { // args: host(string), port(i32) let data = slice(args, args_len); let (_, argc, mut pos) = tlv_parse_header(data).map_err(|_| ()).or(Err(())).unwrap_or((1,0,4)); if argc < 2 { return E_INV_ARGS; } let (_t1, s1, p1) = tlv_parse_entry_hdr(data, pos).map_err(|_| ()).or(Err(())).unwrap_or((0,0,0)); if data[pos] != 6 { return E_INV_ARGS; } let host = std::str::from_utf8(&data[p1..p1+s1]).map_err(|_| ()).or(Err(())) .unwrap_or("").to_string(); pos = p1 + s1; let (_t2, _s2, p2) = tlv_parse_entry_hdr(data, pos).map_err(|_| ()).or(Err(())).unwrap_or((0,0,0)); let port = if data[pos] == 2 { // i32 let mut b=[0u8;4]; b.copy_from_slice(&data[p2..p2+4]); i32::from_le_bytes(b) } else { return E_INV_ARGS }; let addr = format!("{}:{}", host, port); match TcpStream::connect(addr) { Ok(mut stream) => { stream.set_nonblocking(false).ok(); let conn_id = SOCK_CONN_ID.fetch_add(1, Ordering::Relaxed); SOCK_CONNS.lock().unwrap().insert(conn_id, SockConnState { stream: Mutex::new(stream) }); netlog!("sock:connect ok conn_id={}", conn_id); write_tlv_handle(T_SOCK_CONN, conn_id, res, res_len) } Err(e) => { netlog!("sock:connect error: {:?}", e); E_ERR } } } _ => E_INV_METHOD, } } unsafe fn sock_conn_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 { match m { M_CONN_BIRTH => { // not used directly write_u32(0, res, res_len) } M_CONN_SEND => { let bytes = tlv_parse_bytes(slice(args, args_len)).unwrap_or_default(); if let Some(conn) = SOCK_CONNS.lock().unwrap().get(&id) { if let Ok(mut s) = conn.stream.lock() { let _ = s.write_all(&bytes); } netlog!("sock:send id={} n={}", id, bytes.len()); return write_tlv_void(res, res_len); } E_INV_HANDLE } M_CONN_RECV => { if let Some(conn) = SOCK_CONNS.lock().unwrap().get(&id) { if let Ok(mut s) = conn.stream.lock() { let mut buf = vec![0u8; 4096]; match s.read(&mut buf) { Ok(n) => { buf.truncate(n); netlog!("sock:recv id={} n={}", id, n); return write_tlv_bytes(&buf, res, res_len); } Err(_) => return write_tlv_bytes(&[], res, res_len), } } } E_INV_HANDLE } M_CONN_RECV_TIMEOUT => { let timeout_ms = tlv_parse_i32(slice(args, args_len)).unwrap_or(0).max(0) as u64; if let Some(conn) = SOCK_CONNS.lock().unwrap().get(&id) { if let Ok(mut s) = conn.stream.lock() { let _ = s.set_read_timeout(Some(Duration::from_millis(timeout_ms))); let mut buf = vec![0u8; 4096]; let resv = s.read(&mut buf); let _ = s.set_read_timeout(None); match resv { Ok(n) => { buf.truncate(n); netlog!("sock:recvTimeout id={} n={} ms={}", id, n, timeout_ms); return write_tlv_bytes(&buf, res, res_len); } Err(e) => { netlog!("sock:recvTimeout error id={} ms={} err={:?}", id, timeout_ms, e); return E_ERR; }, } } } E_INV_HANDLE } M_CONN_CLOSE => { // Drop the stream by removing entry SOCK_CONNS.lock().unwrap().remove(&id); write_tlv_void(res, res_len) } _ => E_INV_METHOD, } }