// Extracted call-related builders from builder.rs to keep files lean use super::{Effect, EffectMask, FunctionSignature, MirInstruction, MirType, ValueId}; use crate::ast::{ASTNode, LiteralValue, MethodCallExpr}; use crate::mir::definitions::call_unified::{Callee, CallFlags, MirCall}; use crate::mir::TypeOpKind; use super::call_resolution; // Import from new modules use super::calls::*; pub use super::calls::call_target::CallTarget; impl super::MirBuilder { /// Unified call emission - replaces all emit_*_call methods /// ChatGPT5 Pro A++ design for complete call unification pub fn emit_unified_call( &mut self, dst: Option, target: CallTarget, args: Vec, ) -> Result<(), String> { // Check environment variable for unified call usage if !call_unified::is_unified_call_enabled() { // Fall back to legacy implementation return self.emit_legacy_call(dst, target, args); } // Convert CallTarget to Callee using the new module let callee = call_unified::convert_target_to_callee( target, &self.value_origin_newbox, &self.value_types, )?; // Validate call arguments call_unified::validate_call_args(&callee, &args)?; // Create MirCall instruction using the new module let mir_call = call_unified::create_mir_call(dst, callee.clone(), args.clone()); // For Phase 2: Convert to legacy Call instruction with new callee field let legacy_call = MirInstruction::Call { dst: mir_call.dst, func: ValueId::new(0), // Dummy value for legacy compatibility callee: Some(mir_call.callee), args: mir_call.args, effects: mir_call.effects, }; self.emit_instruction(legacy_call) } /// Legacy call fallback - preserves existing behavior pub(super) fn emit_legacy_call( &mut self, dst: Option, target: CallTarget, args: Vec, ) -> Result<(), String> { match target { CallTarget::Method { receiver, method, .. } => { // Use existing emit_box_or_plugin_call self.emit_box_or_plugin_call(dst, receiver, method, None, args, EffectMask::IO) }, CallTarget::Constructor(box_type) => { // Use existing NewBox let dst = dst.ok_or("Constructor must have destination")?; self.emit_instruction(MirInstruction::NewBox { dst, box_type, args, }) }, CallTarget::Extern(name) => { // Use existing ExternCall let parts: Vec<&str> = name.splitn(2, '.').collect(); let (iface, method) = if parts.len() == 2 { (parts[0].to_string(), parts[1].to_string()) } else { ("nyash".to_string(), name) }; self.emit_instruction(MirInstruction::ExternCall { dst, iface_name: iface, method_name: method, args, effects: EffectMask::IO, }) }, CallTarget::Global(name) => { // Create a string constant for the function name let name_const = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: name_const, value: super::ConstValue::String(name), })?; self.emit_instruction(MirInstruction::Call { dst, func: name_const, callee: None, // Legacy mode args, effects: EffectMask::IO, }) }, CallTarget::Value(func_val) => { self.emit_instruction(MirInstruction::Call { dst, func: func_val, callee: None, // Legacy mode args, effects: EffectMask::IO, }) }, CallTarget::Closure { params, captures, me_capture } => { let dst = dst.ok_or("Closure creation must have destination")?; self.emit_instruction(MirInstruction::NewClosure { dst, params, body: vec![], // Empty body for now captures, me: me_capture, }) }, } } // Phase 2 Migration: Convenience methods that use emit_unified_call /// Emit a global function call (print, panic, etc.) pub fn emit_global_call( &mut self, dst: Option, name: String, args: Vec, ) -> Result<(), String> { self.emit_unified_call(dst, CallTarget::Global(name), args) } /// Emit a method call (box.method) pub fn emit_method_call( &mut self, dst: Option, receiver: ValueId, method: String, args: Vec, ) -> Result<(), String> { self.emit_unified_call( dst, CallTarget::Method { box_type: None, // Auto-infer method, receiver, }, args, ) } /// Emit a constructor call (new BoxType) pub fn emit_constructor_call( &mut self, dst: ValueId, box_type: String, args: Vec, ) -> Result<(), String> { self.emit_unified_call( Some(dst), CallTarget::Constructor(box_type), args, ) } /// Try handle math.* function in function-style (sin/cos/abs/min/max). /// Returns Some(result) if handled, otherwise None. fn try_handle_math_function( &mut self, name: &str, raw_args: Vec, ) -> Option> { if !special_handlers::is_math_function(name) { return None; } // Build numeric args directly for math.* to preserve f64 typing let mut math_args: Vec = Vec::new(); for a in raw_args.into_iter() { match a { ASTNode::New { class, arguments, .. } if class == "FloatBox" && arguments.len() == 1 => { match self.build_expression(arguments[0].clone()) { v @ Ok(_) => math_args.push(v.unwrap()), err @ Err(_) => return Some(err), } } ASTNode::New { class, arguments, .. } if class == "IntegerBox" && arguments.len() == 1 => { let iv = match self.build_expression(arguments[0].clone()) { Ok(v) => v, Err(e) => return Some(Err(e)) }; let fv = self.value_gen.next(); if let Err(e) = self.emit_instruction(MirInstruction::TypeOp { dst: fv, op: TypeOpKind::Cast, value: iv, ty: MirType::Float }) { return Some(Err(e)); } math_args.push(fv); } ASTNode::Literal { value: LiteralValue::Float(_), .. } => { match self.build_expression(a) { v @ Ok(_) => math_args.push(v.unwrap()), err @ Err(_) => return Some(err), } } other => { match self.build_expression(other) { v @ Ok(_) => math_args.push(v.unwrap()), err @ Err(_) => return Some(err), } } } } // new MathBox() let math_recv = self.value_gen.next(); if let Err(e) = self.emit_constructor_call(math_recv, "MathBox".to_string(), vec![]) { return Some(Err(e)); } self.value_origin_newbox.insert(math_recv, "MathBox".to_string()); // birth() if let Err(e) = self.emit_method_call(None, math_recv, "birth".to_string(), vec![]) { return Some(Err(e)); } // call method let dst = self.value_gen.next(); if let Err(e) = self.emit_method_call(Some(dst), math_recv, name.to_string(), math_args) { return Some(Err(e)); } Some(Ok(dst)) } /// Try handle env.* extern methods like env.console.log via FieldAccess(object, field). fn try_handle_env_method( &mut self, object: &ASTNode, method: &str, arguments: &Vec, ) -> Option> { let ASTNode::FieldAccess { object: env_obj, field: env_field, .. } = object else { return None; }; if let ASTNode::Variable { name: env_name, .. } = env_obj.as_ref() { if env_name != "env" { return None; } // Build arguments once let mut arg_values = Vec::new(); for arg in arguments { match self.build_expression(arg.clone()) { Ok(v) => arg_values.push(v), Err(e) => return Some(Err(e)) } } let iface = env_field.as_str(); let m = method; let mut extern_call = |iface_name: &str, method_name: &str, effects: EffectMask, returns: bool| -> Result { let result_id = self.value_gen.next(); self.emit_instruction(MirInstruction::ExternCall { dst: if returns { Some(result_id) } else { None }, iface_name: iface_name.to_string(), method_name: method_name.to_string(), args: arg_values.clone(), effects })?; if returns { Ok(result_id) } else { let void_id = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_id, value: super::ConstValue::Void })?; Ok(void_id) } }; // Use the new module for env method spec if let Some((iface_name, method_name, effects, returns)) = extern_calls::get_env_method_spec(iface, m) { return Some(extern_call(&iface_name, &method_name, effects, returns)); } return None; } None } /// Try direct static call for `me` in static box pub(super) fn try_handle_me_direct_call( &mut self, method: &str, arguments: &Vec, ) -> Option> { let Some(cls_name) = self.current_static_box.clone() else { return None; }; // Build args let mut arg_values = Vec::new(); for a in arguments { match self.build_expression(a.clone()) { Ok(v) => arg_values.push(v), Err(e) => return Some(Err(e)) } } let result_id = self.value_gen.next(); let fun_name = format!("{}.{}{}", cls_name, method, format!("/{}", arg_values.len())); let fun_val = self.value_gen.next(); if let Err(e) = self.emit_instruction(MirInstruction::Const { dst: fun_val, value: super::ConstValue::String(fun_name) }) { return Some(Err(e)); } if let Err(e) = self.emit_instruction(MirInstruction::Call { dst: Some(result_id), func: fun_val, callee: None, // Legacy math function - use old resolution args: arg_values, effects: EffectMask::READ.add(Effect::ReadHeap) }) { return Some(Err(e)); } Some(Ok(result_id)) } // === ChatGPT5 Pro Design: Type-safe Call Resolution System === /// Resolve function call target to type-safe Callee /// Implements the core logic of compile-time function resolution fn resolve_call_target(&self, name: &str) -> Result { method_resolution::resolve_call_target( name, &self.current_static_box, &self.variable_map, ) } // Build function call: name(args) pub(super) fn build_function_call( &mut self, name: String, args: Vec, ) -> Result { // Minimal TypeOp wiring via function-style: isType(value, "Type"), asType(value, "Type") if (name == "isType" || name == "asType") && args.len() == 2 { if let Some(type_name) = special_handlers::extract_string_literal(&args[1]) { let val = self.build_expression(args[0].clone())?; let ty = special_handlers::parse_type_name_to_mir(&type_name); let dst = self.value_gen.next(); let op = if name == "isType" { TypeOpKind::Check } else { TypeOpKind::Cast }; self.emit_instruction(MirInstruction::TypeOp { dst, op, value: val, ty, })?; return Ok(dst); } } // Keep original args for special handling (math.*) let raw_args = args.clone(); if let Some(res) = self.try_handle_math_function(&name, raw_args) { return res; } // Build argument values let mut arg_values = Vec::new(); for a in args { arg_values.push(self.build_expression(a)?); } // Phase 3.2: Use unified call for basic functions like print let use_unified = std::env::var("NYASH_MIR_UNIFIED_CALL").unwrap_or_default() == "1"; if use_unified { // New unified path - use emit_unified_call with Global target let dst = self.value_gen.next(); self.emit_unified_call( Some(dst), CallTarget::Global(name), arg_values, )?; Ok(dst) } else { // Legacy path let dst = self.value_gen.next(); // === ChatGPT5 Pro Design: Type-safe function call resolution === // Resolve call target using new type-safe system let callee = self.resolve_call_target(&name)?; // Legacy compatibility: Create dummy func value for old systems let fun_val = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: fun_val, value: super::ConstValue::String(name.clone()), })?; // Emit new-style Call with type-safe callee self.emit_instruction(MirInstruction::Call { dst: Some(dst), func: fun_val, // Legacy compatibility callee: Some(callee), // New type-safe resolution args: arg_values, effects: EffectMask::READ.add(Effect::ReadHeap), })?; Ok(dst) } } // Build method call: object.method(arguments) pub(super) fn build_method_call( &mut self, object: ASTNode, method: String, arguments: Vec, ) -> Result { if std::env::var("NYASH_STATIC_CALL_TRACE").ok().as_deref() == Some("1") { let kind = match &object { ASTNode::Variable { .. } => "Variable", ASTNode::FieldAccess { .. } => "FieldAccess", ASTNode::This { .. } => "This", ASTNode::Me { .. } => "Me", _ => "Other", }; eprintln!("[builder] method-call object kind={} method={}", kind, method); } // 1. Static box method call: BoxName.method(args) if let ASTNode::Variable { name: obj_name, .. } = &object { let is_local_var = self.variable_map.contains_key(obj_name); // Phase 15.5: Treat unknown identifiers in receiver position as static type names if !is_local_var { return self.handle_static_method_call(obj_name, &method, &arguments); } } // 2. Handle env.* methods if let Some(res) = self.try_handle_env_method(&object, &method, &arguments) { return res; } // 3. Handle me.method() calls if let ASTNode::Me { .. } = object { if let Some(res) = self.handle_me_method_call(&method, &arguments)? { return Ok(res); } } // 4. Build object value for remaining cases let object_value = self.build_expression(object)?; // 5. Handle TypeOp methods: value.is("Type") / value.as("Type") // Note: This was duplicated in original code - now unified! if let Some(type_name) = special_handlers::is_typeop_method(&method, &arguments) { return self.handle_typeop_method(object_value, &method, &type_name); } // 6. Fallback: standard Box/Plugin method call self.handle_standard_method_call(object_value, method, &arguments) } // Map a user-facing type name to MIR type pub(super) fn parse_type_name_to_mir(name: &str) -> super::MirType { special_handlers::parse_type_name_to_mir(name) } // Extract string literal from AST node if possible pub(super) fn extract_string_literal(node: &ASTNode) -> Option { special_handlers::extract_string_literal(node) } // Build from expression: from Parent.method(arguments) pub(super) fn build_from_expression( &mut self, parent: String, method: String, arguments: Vec, ) -> Result { let mut arg_values = Vec::new(); for arg in arguments { arg_values.push(self.build_expression(arg)?); } let parent_value = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: parent_value, value: super::ConstValue::String(parent), })?; let result_id = self.value_gen.next(); self.emit_box_or_plugin_call( Some(result_id), parent_value, method, None, arg_values, EffectMask::READ.add(Effect::ReadHeap), )?; Ok(result_id) } // Lower a box method into a standalone MIR function (with `me` parameter) pub(super) fn lower_method_as_function( &mut self, func_name: String, box_name: String, params: Vec, body: Vec, ) -> Result<(), String> { let signature = function_lowering::prepare_method_signature( func_name, &box_name, ¶ms, &body, ); let returns_value = !matches!(signature.return_type, MirType::Void); let entry = self.block_gen.next(); let function = super::MirFunction::new(signature, entry); let saved_function = self.current_function.take(); let saved_block = self.current_block.take(); let saved_var_map = std::mem::take(&mut self.variable_map); let saved_value_gen = self.value_gen.clone(); self.value_gen.reset(); self.current_function = Some(function); self.current_block = Some(entry); self.ensure_block_exists(entry)?; if let Some(ref mut f) = self.current_function { let me_id = self.value_gen.next(); f.params.push(me_id); self.variable_map.insert("me".to_string(), me_id); self.value_origin_newbox.insert(me_id, box_name.clone()); for p in ¶ms { let pid = self.value_gen.next(); f.params.push(pid); self.variable_map.insert(p.clone(), pid); } } let program_ast = function_lowering::wrap_in_program(body); let _last = self.build_expression(program_ast)?; if !returns_value && !self.is_current_block_terminated() { let void_val = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_val, value: super::ConstValue::Void, })?; self.emit_instruction(MirInstruction::Return { value: Some(void_val), })?; } if let Some(ref mut f) = self.current_function { if returns_value && matches!(f.signature.return_type, MirType::Void | MirType::Unknown) { let mut inferred: Option = None; 'search: for (_bid, bb) in f.blocks.iter() { for inst in bb.instructions.iter() { if let MirInstruction::Return { value: Some(v) } = inst { if let Some(mt) = self.value_types.get(v).cloned() { inferred = Some(mt); break 'search; } } } if let Some(MirInstruction::Return { value: Some(v) }) = &bb.terminator { if let Some(mt) = self.value_types.get(v).cloned() { inferred = Some(mt); break; } } } if let Some(mt) = inferred { f.signature.return_type = mt; } } } let finalized_function = self.current_function.take().unwrap(); if let Some(ref mut module) = self.current_module { module.add_function(finalized_function); } self.current_function = saved_function; self.current_block = saved_block; self.variable_map = saved_var_map; self.value_gen = saved_value_gen; Ok(()) } // Lower a static method body into a standalone MIR function (no `me` parameter) pub(super) fn lower_static_method_as_function( &mut self, func_name: String, params: Vec, body: Vec, ) -> Result<(), String> { let signature = function_lowering::prepare_static_method_signature( func_name, ¶ms, &body, ); let returns_value = !matches!(signature.return_type, MirType::Void); let entry = self.block_gen.next(); let function = super::MirFunction::new(signature, entry); let saved_function = self.current_function.take(); let saved_block = self.current_block.take(); let saved_var_map = std::mem::take(&mut self.variable_map); let saved_value_gen = self.value_gen.clone(); self.value_gen.reset(); self.current_function = Some(function); self.current_block = Some(entry); self.ensure_block_exists(entry)?; if let Some(ref mut f) = self.current_function { for p in ¶ms { let pid = self.value_gen.next(); f.params.push(pid); self.variable_map.insert(p.clone(), pid); } } let program_ast = function_lowering::wrap_in_program(body); let _last = self.build_expression(program_ast)?; if !returns_value { if let Some(ref mut f) = self.current_function { if let Some(block) = f.get_block(self.current_block.unwrap()) { if !block.is_terminated() { let void_val = self.value_gen.next(); self.emit_instruction(MirInstruction::Const { dst: void_val, value: super::ConstValue::Void, })?; self.emit_instruction(MirInstruction::Return { value: Some(void_val), })?; } } } } if let Some(ref mut f) = self.current_function { if returns_value && matches!(f.signature.return_type, MirType::Void | MirType::Unknown) { let mut inferred: Option = None; 'search: for (_bid, bb) in f.blocks.iter() { for inst in bb.instructions.iter() { if let MirInstruction::Return { value: Some(v) } = inst { if let Some(mt) = self.value_types.get(v).cloned() { inferred = Some(mt); break 'search; } } } if let Some(MirInstruction::Return { value: Some(v) }) = &bb.terminator { if let Some(mt) = self.value_types.get(v).cloned() { inferred = Some(mt); break; } } } if let Some(mt) = inferred { f.signature.return_type = mt; } } } let finalized = self.current_function.take().unwrap(); if let Some(ref mut module) = self.current_module { module.add_function(finalized); } self.current_function = saved_function; self.current_block = saved_block; self.variable_map = saved_var_map; self.value_gen = saved_value_gen; Ok(()) } }