Major improvement to reduce parameter explosion (15+ args → 3-4 contexts):
- Add LowerFnCtx/BlockCtx for grouping related parameters
- Add lightweight StrHandle/StrPtr newtypes for string safety
- Implement boxed API wrappers for boxcall/fields/invoke
- Add dev checks infrastructure (NYASH_DEV_CHECK_DISPATCH_ONLY_PHI)
Key achievements:
- lower_boxcall: 16 args → 7 args via boxed API
- fields/invoke: Similar parameter reduction
- BuilderCursor discipline enforced throughout
- String handle invariant: i64 across blocks, i8* only at call sites
Status:
- Internal migration in progress (fields → invoke → marshal)
- Full cutover pending due to borrow checker constraints
- dep_tree_min_string.o generation successful (sealed=ON)
Next: Complete internal migration before flipping to boxed APIs
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
Added:
- Resolver API (resolve_i64) for unified value resolution with per-block cache
- llvmlite harness (Python) for rapid PHI/SSA verification
- Comprehensive LLVM documentation suite:
- LLVM_LAYER_OVERVIEW.md: Overall architecture and invariants
- RESOLVER_API.md: Value resolution strategy
- LLVM_HARNESS.md: Python verification harness
Updated:
- BuilderCursor applied to ALL lowering paths (externcall/newbox/arrays/maps/call)
- localize_to_i64 for dominance safety in strings/compare/flow
- NYASH_LLVM_DUMP_ON_FAIL=1 for debug IR output
Key insight: LoopForm didn't cause problems, it just exposed existing design flaws:
- Scattered value resolution (now unified via Resolver)
- Inconsistent type conversion placement
- Ambiguous PHI wiring responsibilities
Next: Wire Resolver throughout, achieve sealed=ON green for dep_tree_min_string
- Added llvmlite verification harness strategy
- Python as parallel verification path for PHI/SSA issues
- Nyash ABI wrapper for LLVM emit abstraction
- NYASH_LLVM_USE_HARNESS=1 flag for mode switching
- Goal: Rust implementation in 1-2 days, Python for rapid verification
Acknowledging reality: When stuck at minimal viable implementation,
changing implementation language is a practical solution.
'Simple is Best' - the core Nyash philosophy.
- Add NYASH_ENABLE_LOOPFORM=1 gate for experimental loop normalization
- Detect simple while-patterns in Branch terminator (header→body→header)
- Add loopform.rs with scaffold for future Signal-based lowering
- Wire detection in codegen/mod.rs (non-invasive, logs only)
- Update CURRENT_TASK.md with LoopForm experimental plan
- Goal: Centralize PHIs at dispatch blocks, simplify terminator management
This is the first step towards the LoopForm IR revolution where
"Everything is Box × Everything is Loop". Currently detection-only,
actual lowering will follow once basic patterns are validated.
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
## LLVM Call Instruction Modularization
- Moved MirInstruction::Call lowering to separate instructions/call.rs
- Follows the principle of one MIR instruction per file
- Call implementation was already complete, just needed modularization
## Phase 21 Documentation
- Moved all Phase 21 content to private/papers/paper-f-self-parsing-db/
- Preserved AI evaluations from Gemini and Codex
- Academic paper potential confirmed by both AIs
- Self-parsing AST database approach validated
## Next Steps
- Continue monitoring ChatGPT5's LLVM improvements
- Consider creating separate nyash-llvm-compiler crate when LLVM layer is stable
- This will reduce build times by isolating LLVM dependencies
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>