feat(joinir): Phase 171-fix ConditionEnv/ConditionBinding architecture

Proper HOST↔JoinIR ValueId separation for condition variables:

- Add ConditionEnv struct (name → JoinIR-local ValueId mapping)
- Add ConditionBinding struct (HOST/JoinIR ValueId pairs)
- Modify condition_to_joinir to use ConditionEnv instead of builder.variable_map
- Update Pattern2 lowerer to build ConditionEnv and ConditionBindings
- Extend JoinInlineBoundary with condition_bindings field
- Update BoundaryInjector to inject Copy instructions for condition variables

This fixes the undefined ValueId errors where HOST ValueIds were being
used directly in JoinIR instructions. Programs now execute (RC: 0),
though loop variable exit values still need Phase 172 work.

Key invariants established:
1. JoinIR uses ONLY JoinIR-local ValueIds
2. HOST↔JoinIR bridging is ONLY through JoinInlineBoundary
3. condition_to_joinir NEVER accesses builder.variable_map

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
nyash-codex
2025-12-07 01:45:03 +09:00
parent b8a9d08894
commit e30116f53d
27 changed files with 5419 additions and 85 deletions

View File

@ -0,0 +1,596 @@
//! Phase 169: JoinIR Condition Lowering Helper
//!
//! This module provides AST → JoinIR condition lowering for loop patterns.
//! Unlike BoolExprLowerer (which generates MIR), this generates JoinIR instructions.
//!
//! ## Design Philosophy
//!
//! **Separation of Concerns**:
//! - BoolExprLowerer: AST → MIR (for regular control flow)
//! - condition_to_joinir: AST → JoinIR (for loop lowerers)
//!
//! This dual approach maintains clean boundaries:
//! - Loop lowerers work in JoinIR space (pure functional transformation)
//! - Regular control flow uses MIR space (stateful builder)
//!
//! ## Usage Example
//!
//! ```rust
//! let mut value_counter = 0u32;
//! let mut alloc_value = || {
//! let id = ValueId(value_counter);
//! value_counter += 1;
//! id
//! };
//!
//! // Lower condition: i < end
//! let (cond_value, cond_insts) = lower_condition_to_joinir(
//! condition_ast,
//! &mut alloc_value,
//! builder,
//! )?;
//!
//! // cond_value: ValueId holding boolean result
//! // cond_insts: Vec<JoinInst::Compute> to evaluate condition
//! ```
use crate::ast::{ASTNode, BinaryOperator, LiteralValue, UnaryOperator};
use crate::mir::join_ir::{BinOpKind, CompareOp, ConstValue, JoinInst, MirLikeInst};
use crate::mir::ValueId;
use std::collections::HashMap;
/// Phase 171-fix: Environment for condition expression lowering
/// Maps variable names to JoinIR-local ValueIds
#[derive(Debug, Clone, Default)]
pub struct ConditionEnv {
pub name_to_join: HashMap<String, ValueId>,
}
impl ConditionEnv {
pub fn new() -> Self {
Self { name_to_join: HashMap::new() }
}
pub fn insert(&mut self, name: String, join_id: ValueId) {
self.name_to_join.insert(name, join_id);
}
pub fn get(&self, name: &str) -> Option<ValueId> {
self.name_to_join.get(name).copied()
}
}
/// Phase 171-fix: Binding between HOST and JoinIR ValueIds for condition variables
#[derive(Debug, Clone)]
pub struct ConditionBinding {
pub name: String,
pub host_value: ValueId,
pub join_value: ValueId,
}
/// Lower an AST condition to JoinIR instructions
///
/// Phase 171-fix: Changed to use ConditionEnv instead of builder
///
/// # Arguments
///
/// * `cond_ast` - AST node representing the boolean condition
/// * `alloc_value` - ValueId allocator function
/// * `env` - ConditionEnv for variable resolution (JoinIR-local ValueIds)
///
/// # Returns
///
/// * `Ok((ValueId, Vec<JoinInst>))` - Condition result ValueId and evaluation instructions
/// * `Err(String)` - Lowering error message
///
/// # Supported Patterns
///
/// - Comparisons: `i < n`, `x == y`, `a != b`, `x <= y`, `x >= y`, `x > y`
/// - Logical: `a && b`, `a || b`, `!cond`
/// - Variables and literals
pub fn lower_condition_to_joinir<F>(
cond_ast: &ASTNode,
alloc_value: &mut F,
env: &ConditionEnv,
) -> Result<(ValueId, Vec<JoinInst>), String>
where
F: FnMut() -> ValueId,
{
let mut instructions = Vec::new();
let result_value = lower_condition_recursive(cond_ast, alloc_value, env, &mut instructions)?;
Ok((result_value, instructions))
}
/// Recursive helper for condition lowering
///
/// Phase 171-fix: Changed to use ConditionEnv instead of builder
fn lower_condition_recursive<F>(
cond_ast: &ASTNode,
alloc_value: &mut F,
env: &ConditionEnv,
instructions: &mut Vec<JoinInst>,
) -> Result<ValueId, String>
where
F: FnMut() -> ValueId,
{
match cond_ast {
// Comparison operations: <, ==, !=, <=, >=, >
ASTNode::BinaryOp {
operator,
left,
right,
..
} => match operator {
BinaryOperator::Less
| BinaryOperator::Equal
| BinaryOperator::NotEqual
| BinaryOperator::LessEqual
| BinaryOperator::GreaterEqual
| BinaryOperator::Greater => {
// Lower left and right sides
let lhs = lower_value_expression(left, alloc_value, env, instructions)?;
let rhs = lower_value_expression(right, alloc_value, env, instructions)?;
let dst = alloc_value();
let cmp_op = match operator {
BinaryOperator::Less => CompareOp::Lt,
BinaryOperator::Equal => CompareOp::Eq,
BinaryOperator::NotEqual => CompareOp::Ne,
BinaryOperator::LessEqual => CompareOp::Le,
BinaryOperator::GreaterEqual => CompareOp::Ge,
BinaryOperator::Greater => CompareOp::Gt,
_ => unreachable!(),
};
// Emit Compare instruction
instructions.push(JoinInst::Compute(MirLikeInst::Compare {
dst,
op: cmp_op,
lhs,
rhs,
}));
Ok(dst)
}
BinaryOperator::And => {
// Logical AND: evaluate both sides and combine
let lhs = lower_condition_recursive(left, alloc_value, env, instructions)?;
let rhs = lower_condition_recursive(right, alloc_value, env, instructions)?;
let dst = alloc_value();
// Emit BinOp And instruction
instructions.push(JoinInst::Compute(MirLikeInst::BinOp {
dst,
op: BinOpKind::And,
lhs,
rhs,
}));
Ok(dst)
}
BinaryOperator::Or => {
// Logical OR: evaluate both sides and combine
let lhs = lower_condition_recursive(left, alloc_value, env, instructions)?;
let rhs = lower_condition_recursive(right, alloc_value, env, instructions)?;
let dst = alloc_value();
// Emit BinOp Or instruction
instructions.push(JoinInst::Compute(MirLikeInst::BinOp {
dst,
op: BinOpKind::Or,
lhs,
rhs,
}));
Ok(dst)
}
_ => {
// Other operators (arithmetic, etc.)
Err(format!(
"Unsupported binary operator in condition: {:?}",
operator
))
}
},
// Unary NOT operator
ASTNode::UnaryOp {
operator: UnaryOperator::Not,
operand,
..
} => {
let operand_val = lower_condition_recursive(operand, alloc_value, env, instructions)?;
let dst = alloc_value();
// Emit UnaryOp Not instruction
instructions.push(JoinInst::Compute(MirLikeInst::UnaryOp {
dst,
op: crate::mir::join_ir::UnaryOp::Not,
operand: operand_val,
}));
Ok(dst)
}
// Variables - resolve from ConditionEnv (Phase 171-fix)
ASTNode::Variable { name, .. } => {
// Look up variable in ConditionEnv (JoinIR-local ValueIds)
env.get(name)
.ok_or_else(|| format!("Variable '{}' not bound in ConditionEnv", name))
}
// Literals - emit as constants
ASTNode::Literal { value, .. } => {
let dst = alloc_value();
let const_value = match value {
LiteralValue::Integer(n) => ConstValue::Integer(*n),
LiteralValue::String(s) => ConstValue::String(s.clone()),
LiteralValue::Bool(b) => ConstValue::Bool(*b),
LiteralValue::Float(_) => {
// Float literals not supported in JoinIR ConstValue yet
return Err("Float literals not supported in JoinIR conditions yet".to_string());
}
_ => {
return Err(format!("Unsupported literal type in condition: {:?}", value));
}
};
instructions.push(JoinInst::Compute(MirLikeInst::Const {
dst,
value: const_value,
}));
Ok(dst)
}
_ => Err(format!("Unsupported AST node in condition: {:?}", cond_ast)),
}
}
/// Lower a value expression (for comparison operands, etc.)
///
/// Phase 171-fix: Changed to use ConditionEnv instead of builder
///
/// This handles the common case where we need to evaluate a simple value
/// (variable or literal) as part of a comparison.
fn lower_value_expression<F>(
expr: &ASTNode,
alloc_value: &mut F,
env: &ConditionEnv,
instructions: &mut Vec<JoinInst>,
) -> Result<ValueId, String>
where
F: FnMut() -> ValueId,
{
match expr {
// Variables - look up in ConditionEnv (Phase 171-fix)
ASTNode::Variable { name, .. } => env
.get(name)
.ok_or_else(|| format!("Variable '{}' not bound in ConditionEnv", name)),
// Literals - emit as constants
ASTNode::Literal { value, .. } => {
let dst = alloc_value();
let const_value = match value {
LiteralValue::Integer(n) => ConstValue::Integer(*n),
LiteralValue::String(s) => ConstValue::String(s.clone()),
LiteralValue::Bool(b) => ConstValue::Bool(*b),
LiteralValue::Float(_) => {
// Float literals not supported in JoinIR ConstValue yet
return Err("Float literals not supported in JoinIR value expressions yet".to_string());
}
_ => {
return Err(format!("Unsupported literal type: {:?}", value));
}
};
instructions.push(JoinInst::Compute(MirLikeInst::Const {
dst,
value: const_value,
}));
Ok(dst)
}
// Binary operations (for arithmetic in conditions like i + 1 < n)
ASTNode::BinaryOp {
operator,
left,
right,
..
} => {
let lhs = lower_value_expression(left, alloc_value, env, instructions)?;
let rhs = lower_value_expression(right, alloc_value, env, instructions)?;
let dst = alloc_value();
let bin_op = match operator {
BinaryOperator::Add => BinOpKind::Add,
BinaryOperator::Subtract => BinOpKind::Sub,
BinaryOperator::Multiply => BinOpKind::Mul,
BinaryOperator::Divide => BinOpKind::Div,
BinaryOperator::Modulo => BinOpKind::Mod,
_ => {
return Err(format!("Unsupported binary operator in expression: {:?}", operator));
}
};
instructions.push(JoinInst::Compute(MirLikeInst::BinOp {
dst,
op: bin_op,
lhs,
rhs,
}));
Ok(dst)
}
_ => Err(format!("Unsupported expression in value context: {:?}", expr)),
}
}
/// Extract all variable names used in a condition AST (Phase 171)
///
/// This helper recursively traverses the condition AST and collects all
/// unique variable names. Used to determine which variables need to be
/// available in JoinIR scope.
///
/// # Arguments
///
/// * `cond_ast` - AST node representing the condition
/// * `exclude_vars` - Variable names to exclude (e.g., loop parameters already registered)
///
/// # Returns
///
/// Sorted vector of unique variable names found in the condition
///
/// # Example
///
/// ```ignore
/// // For condition: start < end && i < len
/// let vars = extract_condition_variables(
/// condition_ast,
/// &["i".to_string()], // Exclude loop variable 'i'
/// );
/// // Result: ["end", "len", "start"] (sorted, 'i' excluded)
/// ```
pub fn extract_condition_variables(
cond_ast: &ASTNode,
exclude_vars: &[String],
) -> Vec<String> {
use std::collections::BTreeSet;
let mut all_vars = BTreeSet::new();
collect_variables_recursive(cond_ast, &mut all_vars);
// Filter out excluded variables and return sorted list
all_vars.into_iter()
.filter(|name| !exclude_vars.contains(name))
.collect()
}
/// Recursive helper to collect variable names
fn collect_variables_recursive(ast: &ASTNode, vars: &mut std::collections::BTreeSet<String>) {
match ast {
ASTNode::Variable { name, .. } => {
vars.insert(name.clone());
}
ASTNode::BinaryOp { left, right, .. } => {
collect_variables_recursive(left, vars);
collect_variables_recursive(right, vars);
}
ASTNode::UnaryOp { operand, .. } => {
collect_variables_recursive(operand, vars);
}
ASTNode::Literal { .. } => {
// Literals have no variables
}
_ => {
// Other AST nodes not expected in conditions
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ast::{ASTNode, BinaryOperator, LiteralValue, Span};
/// Phase 171-fix: Helper to create a test ConditionEnv with variables
fn create_test_env() -> ConditionEnv {
let mut env = ConditionEnv::new();
// Register test variables (using JoinIR-local ValueIds)
env.insert("i".to_string(), ValueId(0));
env.insert("end".to_string(), ValueId(1));
env
}
#[test]
fn test_simple_comparison() {
let env = create_test_env();
let mut value_counter = 2u32; // Start after i=0, end=1
let mut alloc_value = || {
let id = ValueId(value_counter);
value_counter += 1;
id
};
// AST: i < end
let ast = ASTNode::BinaryOp {
operator: BinaryOperator::Less,
left: Box::new(ASTNode::Variable {
name: "i".to_string(),
span: Span::unknown(),
}),
right: Box::new(ASTNode::Variable {
name: "end".to_string(),
span: Span::unknown(),
}),
span: Span::unknown(),
};
let result = lower_condition_to_joinir(&ast, &mut alloc_value, &env);
assert!(result.is_ok(), "Simple comparison should succeed");
let (_cond_value, instructions) = result.unwrap();
assert_eq!(instructions.len(), 1, "Should generate 1 Compare instruction");
}
#[test]
fn test_comparison_with_literal() {
let env = create_test_env();
let mut value_counter = 2u32;
let mut alloc_value = || {
let id = ValueId(value_counter);
value_counter += 1;
id
};
// AST: i < 10
let ast = ASTNode::BinaryOp {
operator: BinaryOperator::Less,
left: Box::new(ASTNode::Variable {
name: "i".to_string(),
span: Span::unknown(),
}),
right: Box::new(ASTNode::Literal {
value: LiteralValue::Integer(10),
span: Span::unknown(),
}),
span: Span::unknown(),
};
let result = lower_condition_to_joinir(&ast, &mut alloc_value, &env);
assert!(result.is_ok(), "Comparison with literal should succeed");
let (_cond_value, instructions) = result.unwrap();
// Should have: Const(10), Compare
assert_eq!(instructions.len(), 2, "Should generate Const + Compare");
}
#[test]
fn test_logical_or() {
let mut env = ConditionEnv::new();
env.insert("a".to_string(), ValueId(2));
env.insert("b".to_string(), ValueId(3));
let mut value_counter = 4u32;
let mut alloc_value = || {
let id = ValueId(value_counter);
value_counter += 1;
id
};
// AST: a < 5 || b < 5
let ast = ASTNode::BinaryOp {
operator: BinaryOperator::Or,
left: Box::new(ASTNode::BinaryOp {
operator: BinaryOperator::Less,
left: Box::new(ASTNode::Variable {
name: "a".to_string(),
span: Span::unknown(),
}),
right: Box::new(ASTNode::Literal {
value: LiteralValue::Integer(5),
span: Span::unknown(),
}),
span: Span::unknown(),
}),
right: Box::new(ASTNode::BinaryOp {
operator: BinaryOperator::Less,
left: Box::new(ASTNode::Variable {
name: "b".to_string(),
span: Span::unknown(),
}),
right: Box::new(ASTNode::Literal {
value: LiteralValue::Integer(5),
span: Span::unknown(),
}),
span: Span::unknown(),
}),
span: Span::unknown(),
};
let result = lower_condition_to_joinir(&ast, &mut alloc_value, &env);
assert!(result.is_ok(), "OR expression should succeed");
let (_cond_value, instructions) = result.unwrap();
// Should have: Const(5), Compare(a<5), Const(5), Compare(b<5), BinOp(Or)
assert_eq!(instructions.len(), 5, "Should generate proper OR chain");
}
#[test]
fn test_extract_condition_variables_simple() {
// AST: start < end
let ast = ASTNode::BinaryOp {
operator: BinaryOperator::Less,
left: Box::new(ASTNode::Variable {
name: "start".to_string(),
span: Span::unknown(),
}),
right: Box::new(ASTNode::Variable {
name: "end".to_string(),
span: Span::unknown(),
}),
span: Span::unknown(),
};
let vars = extract_condition_variables(&ast, &[]);
assert_eq!(vars, vec!["end", "start"]); // Sorted order
}
#[test]
fn test_extract_condition_variables_with_exclude() {
// AST: i < end
let ast = ASTNode::BinaryOp {
operator: BinaryOperator::Less,
left: Box::new(ASTNode::Variable {
name: "i".to_string(),
span: Span::unknown(),
}),
right: Box::new(ASTNode::Variable {
name: "end".to_string(),
span: Span::unknown(),
}),
span: Span::unknown(),
};
let vars = extract_condition_variables(&ast, &["i".to_string()]);
assert_eq!(vars, vec!["end"]); // 'i' excluded
}
#[test]
fn test_extract_condition_variables_complex() {
// AST: start < end && i < len
let ast = ASTNode::BinaryOp {
operator: BinaryOperator::And,
left: Box::new(ASTNode::BinaryOp {
operator: BinaryOperator::Less,
left: Box::new(ASTNode::Variable {
name: "start".to_string(),
span: Span::unknown(),
}),
right: Box::new(ASTNode::Variable {
name: "end".to_string(),
span: Span::unknown(),
}),
span: Span::unknown(),
}),
right: Box::new(ASTNode::BinaryOp {
operator: BinaryOperator::Less,
left: Box::new(ASTNode::Variable {
name: "i".to_string(),
span: Span::unknown(),
}),
right: Box::new(ASTNode::Variable {
name: "len".to_string(),
span: Span::unknown(),
}),
span: Span::unknown(),
}),
span: Span::unknown(),
};
let vars = extract_condition_variables(&ast, &["i".to_string()]);
assert_eq!(vars, vec!["end", "len", "start"]); // Sorted, 'i' excluded
}
}