📚 docs: Record field declaration design discussion in papers

## Summary
Documented the "init block vs fields-at-top" design discussion as a valuable example of AI-human collaboration in language design.

## Changes

### Paper G (AI Collaboration)
- Added field-declaration-design.md documenting the entire discussion flow
- Showcased how complex init block proposal evolved to simple "fields at top" rule
- Demonstrates AI's tendency toward complexity vs human intuition for simplicity

### Paper H (AI Practical Patterns)
- Added Pattern #17: "Gradual Refinement Pattern" (段階的洗練型)
- Documents the process: Complex AI proposal → Detailed analysis → Human insight → Convergence
- Field declaration design as a typical example

### Paper K (Explosive Incidents)
- Added Incident #046: "init block vs fields-at-top incident"
- Updated total count to 46 incidents
- Shows how a single human comment redirected entire design approach

## Design Decision
After analysis, decided that BoxIndex should remain a compiler-internal structure, not a core Box:
- Core Boxes: User-instantiable runtime values (String, Integer, Array, Map)
- Compiler internals: BoxIndex for name resolution (compile-time only)
- Clear separation of concerns between language features and compiler tools

## Philosophy
This discussion exemplifies key principles:
- The best design needs no explanation
- Constraints provide clarity, not limitation
- "Everything is Box" doesn't mean "compiler internals are Boxes"
- AI tends toward theoretical completeness; humans toward practical simplicity

🐱 Sometimes the simplest answer is right in front of us\!
This commit is contained in:
Selfhosting Dev
2025-09-16 14:57:05 +09:00
parent 6ca56b0652
commit 47f4ca0e44
14 changed files with 804 additions and 96 deletions

View File

@ -270,4 +270,26 @@ AIの診断や実装を鵜呑みにせず、基本に立ち返って検証する
### 効果
- 問題回避: 発生前に防ぐ
- 拡張性確保: 将来の変更に対応
- 安心感: 予測可能な成長
- 安心感: 予測可能な成長
## 17. 段階的洗練型(新規追加)
### 定義
AIの複雑な提案から始まり、人間の直感的な単純化提案を経て、より洗練された解決策に収束するパターン。
### 典型例
- **フィールド宣言位置**: initブロック案複雑→ 先頭のみルール(単純)
- **型情報追加**: 300行の型推論複雑→ 明示的型フィールド(単純)
- **PHI生成**: 複数箇所での重複実装(複雑)→ Resolver統一単純
### プロセス
1. **AI初期提案**: 理論的に完全だが複雑
2. **詳細分析**: メリット・デメリット・他言語比較
3. **人間の直感**: 「もっと簡単にできないか?」
4. **AI即座認識**: 単純解の価値を理解
5. **実装戦略**: 段階的移行計画まで具体化
### 効果
- 最適解への収束: 複雑→単純の自然な流れ
- 学習効果: AIも人間も学ぶ
- 実装容易性: 最終的に簡単な解法に到達