Files
hakorune/plugins/nyash-net-plugin/src/lib.rs

680 lines
30 KiB
Rust
Raw Normal View History

//! Nyash Net Plugin (HTTP stub) - BID-FFI v1
//! Provides HttpServerBox (singleton), HttpRequestBox, HttpResponseBox, HttpClientBox
//! This is a pure in-process stub (no real sockets), suitable for E2E of BoxRef args/returns.
use once_cell::sync::Lazy;
use std::collections::{HashMap, VecDeque};
use std::sync::{Mutex, Arc, atomic::{AtomicBool, AtomicU32, Ordering}};
use std::net::{TcpListener, TcpStream};
use std::io::{Read, Write};
use std::time::Duration;
// Error codes
const OK: i32 = 0;
const E_SHORT: i32 = -1;
const E_INV_TYPE: i32 = -2;
const E_INV_METHOD: i32 = -3;
const E_INV_ARGS: i32 = -4;
const E_ERR: i32 = -5;
const E_INV_HANDLE: i32 = -8;
// Type IDs
const T_SERVER: u32 = 20;
const T_REQUEST: u32 = 21;
const T_RESPONSE: u32 = 22;
const T_CLIENT: u32 = 23;
// Socket
const T_SOCK_SERVER: u32 = 30;
const T_SOCK_CONN: u32 = 31;
const T_SOCK_CLIENT: u32 = 32;
// Methods
const M_BIRTH: u32 = 0;
// Server
const M_SERVER_START: u32 = 1;
const M_SERVER_STOP: u32 = 2;
const M_SERVER_ACCEPT: u32 = 3; // -> Handle(Request)
// Request
const M_REQ_PATH: u32 = 1; // -> String
const M_REQ_READ_BODY: u32 = 2; // -> Bytes (optional)
const M_REQ_RESPOND: u32 = 3; // arg: Handle(Response)
// Response
const M_RESP_SET_STATUS: u32 = 1; // arg: i32
const M_RESP_SET_HEADER: u32 = 2; // args: name, value (string)
const M_RESP_WRITE: u32 = 3; // arg: bytes/string
const M_RESP_READ_BODY: u32 = 4; // -> Bytes
const M_RESP_GET_STATUS: u32 = 5; // -> i32
const M_RESP_GET_HEADER: u32 = 6; // arg: name -> string (or empty)
// Client
const M_CLIENT_GET: u32 = 1; // arg: url -> Handle(Response)
const M_CLIENT_POST: u32 = 2; // args: url, body(bytes/string) -> Handle(Response)
// Socket Server
const M_SRV_BIRTH: u32 = 0;
const M_SRV_START: u32 = 1; // port
const M_SRV_STOP: u32 = 2;
const M_SRV_ACCEPT: u32 = 3; // -> Handle(T_SOCK_CONN)
const M_SRV_ACCEPT_TIMEOUT: u32 = 4; // ms -> Handle(T_SOCK_CONN) or void
// Socket Client
const M_SC_BIRTH: u32 = 0;
const M_SC_CONNECT: u32 = 1; // host, port -> Handle(T_SOCK_CONN)
// Socket Conn
const M_CONN_BIRTH: u32 = 0;
const M_CONN_SEND: u32 = 1; // bytes/string -> void
const M_CONN_RECV: u32 = 2; // -> bytes
const M_CONN_CLOSE: u32 = 3; // -> void
const M_CONN_RECV_TIMEOUT: u32 = 4; // ms -> bytes (empty if timeout)
// Global State
static SERVER_INSTANCES: Lazy<Mutex<HashMap<u32, ServerState>>> = Lazy::new(|| Mutex::new(HashMap::new()));
static SERVER_START_SEQ: AtomicU32 = AtomicU32::new(1);
static ACTIVE_SERVER_ID: Lazy<Mutex<Option<u32>>> = Lazy::new(|| Mutex::new(None));
static REQUESTS: Lazy<Mutex<HashMap<u32, RequestState>>> = Lazy::new(|| Mutex::new(HashMap::new()));
static RESPONSES: Lazy<Mutex<HashMap<u32, ResponseState>>> = Lazy::new(|| Mutex::new(HashMap::new()));
static CLIENTS: Lazy<Mutex<HashMap<u32, ClientState>>> = Lazy::new(|| Mutex::new(HashMap::new()));
static SERVER_ID: AtomicU32 = AtomicU32::new(1);
static REQUEST_ID: AtomicU32 = AtomicU32::new(1);
static RESPONSE_ID: AtomicU32 = AtomicU32::new(1);
static CLIENT_ID: AtomicU32 = AtomicU32::new(1);
static SOCK_SERVER_ID: AtomicU32 = AtomicU32::new(1);
static SOCK_CONN_ID: AtomicU32 = AtomicU32::new(1);
static SOCK_CLIENT_ID: AtomicU32 = AtomicU32::new(1);
struct ServerState {
running: bool,
port: i32,
pending: VecDeque<u32>, // queue of request ids
start_seq: u32,
}
struct RequestState {
path: String,
body: Vec<u8>,
response_id: Option<u32>,
}
struct ResponseState {
status: i32,
headers: HashMap<String, String>,
body: Vec<u8>,
}
struct ClientState;
// Socket types
struct SockServerState {
running: Arc<AtomicBool>,
pending: Arc<Mutex<VecDeque<u32>>>,
handle: Mutex<Option<std::thread::JoinHandle<()>>>,
}
struct SockConnState {
stream: Mutex<TcpStream>,
}
struct SockClientState;
#[no_mangle]
pub extern "C" fn nyash_plugin_abi() -> u32 { 1 }
#[no_mangle]
pub extern "C" fn nyash_plugin_init() -> i32 { OK }
#[no_mangle]
pub extern "C" fn nyash_plugin_invoke(
type_id: u32,
method_id: u32,
instance_id: u32,
args: *const u8,
args_len: usize,
result: *mut u8,
result_len: *mut usize,
) -> i32 {
unsafe {
match type_id {
T_SERVER => server_invoke(method_id, instance_id, args, args_len, result, result_len),
T_REQUEST => request_invoke(method_id, instance_id, args, args_len, result, result_len),
T_RESPONSE => response_invoke(method_id, instance_id, args, args_len, result, result_len),
T_CLIENT => client_invoke(method_id, instance_id, args, args_len, result, result_len),
T_SOCK_SERVER => sock_server_invoke(method_id, instance_id, args, args_len, result, result_len),
T_SOCK_CLIENT => sock_client_invoke(method_id, instance_id, args, args_len, result, result_len),
T_SOCK_CONN => sock_conn_invoke(method_id, instance_id, args, args_len, result, result_len),
_ => E_INV_TYPE,
}
}
}
unsafe fn server_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 {
match m {
M_BIRTH => {
let id = SERVER_ID.fetch_add(1, Ordering::Relaxed);
SERVER_INSTANCES.lock().unwrap().insert(id, ServerState { running: false, port: 0, pending: VecDeque::new(), start_seq: 0 });
write_u32(id, res, res_len)
}
M_SERVER_START => {
// args: TLV string/int (port)
let port = tlv_parse_i32(slice(args, args_len)).unwrap_or(0);
if let Some(s) = SERVER_INSTANCES.lock().unwrap().get_mut(&id) {
s.running = true; s.port = port; s.start_seq = SERVER_START_SEQ.fetch_add(1, Ordering::Relaxed);
}
// mark active server
*ACTIVE_SERVER_ID.lock().unwrap() = Some(id);
write_tlv_void(res, res_len)
}
M_SERVER_STOP => {
if let Some(s) = SERVER_INSTANCES.lock().unwrap().get_mut(&id) {
s.running = false;
}
// clear active if this server was active
let mut active = ACTIVE_SERVER_ID.lock().unwrap();
if active.map(|v| v == id).unwrap_or(false) { *active = None; }
write_tlv_void(res, res_len)
}
M_SERVER_ACCEPT => {
// wait up to ~5000ms for a request to arrive
for _ in 0..1000 {
if let Some(req_id) = {
let mut map = SERVER_INSTANCES.lock().unwrap();
if let Some(s) = map.get_mut(&id) { s.pending.pop_front() } else { None }
} {
return write_tlv_handle(T_REQUEST, req_id, res, res_len);
}
std::thread::sleep(Duration::from_millis(5));
}
write_tlv_void(res, res_len)
}
_ => E_INV_METHOD,
}
}
unsafe fn request_invoke(m: u32, id: u32, _args: *const u8, _args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 {
match m {
M_BIRTH => {
let id = REQUEST_ID.fetch_add(1, Ordering::Relaxed);
REQUESTS.lock().unwrap().insert(id, RequestState { path: String::new(), body: vec![], response_id: None });
write_u32(id, res, res_len)
}
M_REQ_PATH => {
if let Some(rq) = REQUESTS.lock().unwrap().get(&id) {
write_tlv_string(&rq.path, res, res_len)
} else { E_INV_HANDLE }
}
M_REQ_READ_BODY => {
if let Some(rq) = REQUESTS.lock().unwrap().get(&id) {
write_tlv_bytes(&rq.body, res, res_len)
} else { E_INV_HANDLE }
}
M_REQ_RESPOND => {
// args: TLV Handle(Response)
let (t, provided_resp_id) = tlv_parse_handle(slice(_args, _args_len)).map_err(|_| ()).or(Err(())).unwrap_or((0,0));
if t != T_RESPONSE { return E_INV_ARGS; }
// Acquire request
let mut rq_map = REQUESTS.lock().unwrap();
if let Some(rq) = rq_map.get_mut(&id) {
// Determine target response id: prefer existing client response id if present
let target_id = if let Some(existing) = rq.response_id { existing } else { provided_resp_id };
rq.response_id = Some(target_id);
drop(rq_map); // release before locking responses
// Copy response content from provided_resp_id to target_id
let mut resp_map = RESPONSES.lock().unwrap();
let (src_status, src_headers, src_body) = if let Some(src) = resp_map.get(&provided_resp_id) {
(src.status, src.headers.clone(), src.body.clone())
} else { return E_INV_HANDLE };
let dst = resp_map.entry(target_id).or_insert(ResponseState { status: 200, headers: HashMap::new(), body: vec![] });
dst.status = src_status;
dst.headers = src_headers;
dst.body = src_body;
return write_tlv_void(res, res_len);
}
E_INV_HANDLE
}
_ => E_INV_METHOD,
}
}
unsafe fn response_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 {
match m {
M_BIRTH => {
let id = RESPONSE_ID.fetch_add(1, Ordering::Relaxed);
RESPONSES.lock().unwrap().insert(id, ResponseState { status: 200, headers: HashMap::new(), body: vec![] });
write_u32(id, res, res_len)
}
M_RESP_SET_STATUS => {
let code = tlv_parse_i32(slice(args, args_len)).unwrap_or(200);
if let Some(rp) = RESPONSES.lock().unwrap().get_mut(&id) { rp.status = code; }
write_tlv_void(res, res_len)
}
M_RESP_SET_HEADER => {
if let Ok((name, value)) = tlv_parse_two_strings(slice(args, args_len)) {
if let Some(rp) = RESPONSES.lock().unwrap().get_mut(&id) { rp.headers.insert(name, value); }
return write_tlv_void(res, res_len);
}
E_INV_ARGS
}
M_RESP_WRITE => {
// Accept String or Bytes
let bytes = tlv_parse_bytes(slice(args, args_len)).unwrap_or_default();
if let Some(rp) = RESPONSES.lock().unwrap().get_mut(&id) { rp.body.extend_from_slice(&bytes); }
write_tlv_void(res, res_len)
}
M_RESP_READ_BODY => {
if let Some(rp) = RESPONSES.lock().unwrap().get(&id) { write_tlv_bytes(&rp.body, res, res_len) } else { E_INV_HANDLE }
}
M_RESP_GET_STATUS => {
if let Some(rp) = RESPONSES.lock().unwrap().get(&id) { write_tlv_i32(rp.status, res, res_len) } else { E_INV_HANDLE }
}
M_RESP_GET_HEADER => {
if let Ok(name) = tlv_parse_string(slice(args, args_len)) {
if let Some(rp) = RESPONSES.lock().unwrap().get(&id) {
let v = rp.headers.get(&name).cloned().unwrap_or_default();
return write_tlv_string(&v, res, res_len);
} else { return E_INV_HANDLE; }
}
E_INV_ARGS
}
_ => E_INV_METHOD,
}
}
unsafe fn client_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 {
match m {
M_BIRTH => {
let id = CLIENT_ID.fetch_add(1, Ordering::Relaxed);
CLIENTS.lock().unwrap().insert(id, ClientState);
write_u32(id, res, res_len)
}
M_CLIENT_GET => {
// args: TLV String(url)
let url = tlv_parse_string(slice(args, args_len)).unwrap_or_default();
let path = parse_path(&url);
let port_hint = parse_port(&url);
// Create Request
let req_id = REQUEST_ID.fetch_add(1, Ordering::Relaxed);
REQUESTS.lock().unwrap().insert(req_id, RequestState { path, body: vec![], response_id: None });
// Enqueue to server: prefer port match, else newest running
{
let mut servers = SERVER_INSTANCES.lock().unwrap();
if let Some(ph) = port_hint {
if let Some((_, s)) = servers.iter_mut().find(|(_, s)| s.running && s.port == ph) {
s.pending.push_back(req_id);
} else {
if let Some((_, s)) = servers.iter_mut().filter(|(_, s)| s.running).max_by_key(|(_, s)| s.start_seq) {
s.pending.push_back(req_id);
}
}
} else if let Some((_, s)) = servers.iter_mut().filter(|(_, s)| s.running).max_by_key(|(_, s)| s.start_seq) {
s.pending.push_back(req_id);
}
}
// Create Response handle for client side to read later
let resp_id = RESPONSE_ID.fetch_add(1, Ordering::Relaxed);
RESPONSES.lock().unwrap().insert(resp_id, ResponseState { status: 200, headers: HashMap::new(), body: vec![] });
// Link
if let Some(rq) = REQUESTS.lock().unwrap().get_mut(&req_id) { rq.response_id = Some(resp_id); }
// Return Handle(Response)
write_tlv_handle(T_RESPONSE, resp_id, res, res_len)
}
M_CLIENT_POST => {
// args: TLV String(url), Bytes body
let data = slice(args, args_len);
let (_, argc, mut pos) = tlv_parse_header(data).map_err(|_| ()).or(Err(())).unwrap_or((1,0,4));
if argc < 2 { return E_INV_ARGS; }
let (_t1, s1, p1) = tlv_parse_entry_hdr(data, pos).map_err(|_| ()).or(Err(())).unwrap_or((0,0,0));
if data[pos] != 6 { return E_INV_ARGS; }
let url = std::str::from_utf8(&data[p1..p1+s1]).map_err(|_| ()).or(Err(())) .unwrap_or("").to_string();
pos = p1 + s1;
let (t2, s2, p2) = tlv_parse_entry_hdr(data, pos).map_err(|_| ()).or(Err(())).unwrap_or((0,0,0));
if t2 != 6 && t2 != 7 { return E_INV_ARGS; }
let body = data[p2..p2+s2].to_vec();
let path = parse_path(&url);
let port_hint = parse_port(&url);
// Create Request
let req_id = REQUEST_ID.fetch_add(1, Ordering::Relaxed);
REQUESTS.lock().unwrap().insert(req_id, RequestState { path, body, response_id: None });
// Enqueue to server: prefer port match, else newest running
{
let mut servers = SERVER_INSTANCES.lock().unwrap();
if let Some(ph) = port_hint {
if let Some((_, s)) = servers.iter_mut().find(|(_, s)| s.running && s.port == ph) {
s.pending.push_back(req_id);
} else {
if let Some((_, s)) = servers.iter_mut().filter(|(_, s)| s.running).max_by_key(|(_, s)| s.start_seq) {
s.pending.push_back(req_id);
}
}
} else if let Some((_, s)) = servers.iter_mut().filter(|(_, s)| s.running).max_by_key(|(_, s)| s.start_seq) {
s.pending.push_back(req_id);
}
}
// Create paired client Response
let resp_id = RESPONSE_ID.fetch_add(1, Ordering::Relaxed);
RESPONSES.lock().unwrap().insert(resp_id, ResponseState { status: 200, headers: HashMap::new(), body: vec![] });
if let Some(rq) = REQUESTS.lock().unwrap().get_mut(&req_id) { rq.response_id = Some(resp_id); }
write_tlv_handle(T_RESPONSE, resp_id, res, res_len)
}
_ => E_INV_METHOD,
}
}
fn parse_path(url: &str) -> String {
// Robust-ish path extraction:
// - http://host:port/path -> "/path"
// - https://host/path -> "/path"
// - /relative -> as-is
// - otherwise -> "/"
if url.starts_with('/') { return url.to_string(); }
if let Some(scheme_pos) = url.find("//") {
let after_scheme = &url[scheme_pos+2..];
if let Some(slash) = after_scheme.find('/') {
return after_scheme[slash..].to_string();
} else {
return "/".to_string();
}
}
"/".to_string()
}
fn parse_port(url: &str) -> Option<i32> {
// match patterns like http://host:PORT/ or :PORT/
if let Some(pat) = url.split("//").nth(1) {
if let Some(after_host) = pat.split('/').next() {
if let Some(colon) = after_host.rfind(':') {
return after_host[colon+1..].parse::<i32>().ok();
}
}
}
None
}
// ===== Helpers =====
unsafe fn slice<'a>(p: *const u8, len: usize) -> &'a [u8] { std::slice::from_raw_parts(p, len) }
fn write_u32(v: u32, res: *mut u8, res_len: *mut usize) -> i32 {
unsafe {
if res_len.is_null() { return E_INV_ARGS; }
if res.is_null() || *res_len < 4 { *res_len = 4; return E_SHORT; }
let b = v.to_le_bytes();
std::ptr::copy_nonoverlapping(b.as_ptr(), res, 4);
*res_len = 4;
}
OK
}
fn write_tlv_result(payloads: &[(u8, &[u8])], res: *mut u8, res_len: *mut usize) -> i32 {
if res_len.is_null() { return E_INV_ARGS; }
let mut buf = Vec::with_capacity(4 + payloads.iter().map(|(_,p)| 4 + p.len()).sum::<usize>());
buf.extend_from_slice(&1u16.to_le_bytes());
buf.extend_from_slice(&(payloads.len() as u16).to_le_bytes());
for (tag, p) in payloads {
buf.push(*tag); buf.push(0); buf.extend_from_slice(&(p.len() as u16).to_le_bytes()); buf.extend_from_slice(p);
}
unsafe {
let need = buf.len();
if res.is_null() || *res_len < need { *res_len = need; return E_SHORT; }
std::ptr::copy_nonoverlapping(buf.as_ptr(), res, need);
*res_len = need;
}
OK
}
fn write_tlv_void(res: *mut u8, res_len: *mut usize) -> i32 { write_tlv_result(&[(9u8, &[])], res, res_len) }
fn write_tlv_string(s: &str, res: *mut u8, res_len: *mut usize) -> i32 { write_tlv_result(&[(6u8, s.as_bytes())], res, res_len) }
fn write_tlv_bytes(b: &[u8], res: *mut u8, res_len: *mut usize) -> i32 { write_tlv_result(&[(7u8, b)], res, res_len) }
fn write_tlv_i32(v: i32, res: *mut u8, res_len: *mut usize) -> i32 { write_tlv_result(&[(2u8, &v.to_le_bytes())], res, res_len) }
fn write_tlv_handle(t: u32, id: u32, res: *mut u8, res_len: *mut usize) -> i32 {
let mut payload = [0u8;8]; payload[0..4].copy_from_slice(&t.to_le_bytes()); payload[4..8].copy_from_slice(&id.to_le_bytes());
write_tlv_result(&[(8u8, &payload)], res, res_len)
}
fn tlv_parse_header(data: &[u8]) -> Result<(u16,u16,usize), ()> {
if data.len() < 4 { return Err(()); }
let ver = u16::from_le_bytes([data[0], data[1]]); let argc = u16::from_le_bytes([data[2], data[3]]);
if ver != 1 { return Err(()); }
Ok((ver, argc, 4))
}
fn tlv_parse_string(data: &[u8]) -> Result<String, ()> {
let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 1 { return Err(()); }
let (tag, size, p) = tlv_parse_entry_hdr(data, pos)?; if tag != 6 { return Err(()); }
Ok(std::str::from_utf8(&data[p..p+size]).map_err(|_| ())?.to_string())
}
fn tlv_parse_two_strings(data: &[u8]) -> Result<(String,String), ()> {
let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 2 { return Err(()); }
let (tag1, size1, p1) = tlv_parse_entry_hdr(data, pos)?; if tag1 != 6 { return Err(()); }
let s1 = std::str::from_utf8(&data[p1..p1+size1]).map_err(|_| ())?.to_string(); pos = p1+size1;
let (tag2, size2, p2) = tlv_parse_entry_hdr(data, pos)?; if tag2 != 6 { return Err(()); }
let s2 = std::str::from_utf8(&data[p2..p2+size2]).map_err(|_| ())?.to_string();
Ok((s1,s2))
}
fn tlv_parse_bytes(data: &[u8]) -> Result<Vec<u8>, ()> {
let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 1 { return Err(()); }
let (tag, size, p) = tlv_parse_entry_hdr(data, pos)?; if tag != 6 && tag != 7 { return Err(()); }
Ok(data[p..p+size].to_vec())
}
fn tlv_parse_i32(data: &[u8]) -> Result<i32, ()> {
let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 1 { return Err(()); }
let (tag, size, p) = tlv_parse_entry_hdr(data, pos)?;
match (tag, size) {
(2, 4) => { let mut b=[0u8;4]; b.copy_from_slice(&data[p..p+4]); Ok(i32::from_le_bytes(b)) }
(5, 8) => { // accept i64
let mut b=[0u8;8]; b.copy_from_slice(&data[p..p+8]); Ok(i64::from_le_bytes(b) as i32)
}
_ => Err(())
}
}
fn tlv_parse_handle(data: &[u8]) -> Result<(u32,u32), ()> {
let (_, argc, mut pos) = tlv_parse_header(data)?; if argc < 1 { return Err(()); }
let (tag, size, p) = tlv_parse_entry_hdr(data, pos)?; if tag != 8 || size != 8 { return Err(()); }
let mut t = [0u8;4]; let mut i = [0u8;4]; t.copy_from_slice(&data[p..p+4]); i.copy_from_slice(&data[p+4..p+8]);
Ok((u32::from_le_bytes(t), u32::from_le_bytes(i)))
}
fn tlv_parse_entry_hdr(data: &[u8], pos: usize) -> Result<(u8,usize,usize), ()> {
if pos+4 > data.len() { return Err(()); }
let tag = data[pos]; let _rsv = data[pos+1]; let size = u16::from_le_bytes([data[pos+2], data[pos+3]]) as usize; let p = pos+4;
if p+size > data.len() { return Err(()); }
Ok((tag,size,p))
}
// ===== Simple logger (enabled when NYASH_NET_LOG=1) =====
static LOG_ON: Lazy<bool> = Lazy::new(|| std::env::var("NYASH_NET_LOG").unwrap_or_default() == "1");
static LOG_PATH: Lazy<String> = Lazy::new(|| std::env::var("NYASH_NET_LOG_FILE").unwrap_or_else(|_| "net_plugin.log".to_string()));
static LOG_MTX: Lazy<Mutex<()>> = Lazy::new(|| Mutex::new(()));
fn net_log(msg: &str) {
if !*LOG_ON { return; }
// Always mirror to stderr for visibility
eprintln!("[net] {}", msg);
let _g = LOG_MTX.lock().unwrap();
if let Ok(mut f) = std::fs::OpenOptions::new().create(true).append(true).open(&*LOG_PATH) {
let _ = writeln!(f, "[{:?}] {}", std::time::SystemTime::now(), msg);
}
}
macro_rules! netlog {
($($arg:tt)*) => {{ let s = format!($($arg)*); net_log(&s); }}
}
// ===== Socket implementation =====
static SOCK_SERVERS: Lazy<Mutex<HashMap<u32, SockServerState>>> = Lazy::new(|| Mutex::new(HashMap::new()));
static SOCK_CONNS: Lazy<Mutex<HashMap<u32, SockConnState>>> = Lazy::new(|| Mutex::new(HashMap::new()));
static SOCK_CLIENTS: Lazy<Mutex<HashMap<u32, SockClientState>>> = Lazy::new(|| Mutex::new(HashMap::new()));
unsafe fn sock_server_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 {
match m {
M_SRV_BIRTH => {
netlog!("sock:birth server");
let id = SOCK_SERVER_ID.fetch_add(1, Ordering::Relaxed);
SOCK_SERVERS.lock().unwrap().insert(id, SockServerState { running: Arc::new(AtomicBool::new(false)), pending: Arc::new(Mutex::new(VecDeque::new())), handle: Mutex::new(None) });
write_u32(id, res, res_len)
}
M_SRV_START => {
let port = tlv_parse_i32(slice(args, args_len)).unwrap_or(0);
netlog!("sock:start server id={} port={}", id, port);
if let Some(ss) = SOCK_SERVERS.lock().unwrap().get(&id) {
let running = ss.running.clone();
let pending = ss.pending.clone();
running.store(true, Ordering::SeqCst);
let handle = std::thread::spawn(move || {
let addr = format!("127.0.0.1:{}", port);
let listener = TcpListener::bind(addr);
if let Ok(listener) = listener {
listener.set_nonblocking(true).ok();
while running.load(Ordering::SeqCst) {
match listener.accept() {
Ok((stream, _)) => {
stream.set_nonblocking(false).ok();
let conn_id = SOCK_CONN_ID.fetch_add(1, Ordering::Relaxed);
SOCK_CONNS.lock().unwrap().insert(conn_id, SockConnState { stream: Mutex::new(stream) });
netlog!("sock:accept conn_id={}", conn_id);
pending.lock().unwrap().push_back(conn_id);
}
Err(_) => {
std::thread::sleep(std::time::Duration::from_millis(10));
}
}
}
netlog!("sock:listener exit port={}", port);
}
});
*ss.handle.lock().unwrap() = Some(handle);
}
write_tlv_void(res, res_len)
}
M_SRV_STOP => {
netlog!("sock:stop server id={}", id);
if let Some(ss) = SOCK_SERVERS.lock().unwrap().get(&id) {
ss.running.store(false, Ordering::SeqCst);
if let Some(h) = ss.handle.lock().unwrap().take() { let _ = h.join(); }
}
write_tlv_void(res, res_len)
}
M_SRV_ACCEPT => {
if let Some(ss) = SOCK_SERVERS.lock().unwrap().get(&id) {
// wait up to ~5000ms
for _ in 0..1000 {
if let Some(cid) = ss.pending.lock().unwrap().pop_front() {
netlog!("sock:accept returned conn_id={}", cid);
return write_tlv_handle(T_SOCK_CONN, cid, res, res_len);
}
std::thread::sleep(std::time::Duration::from_millis(5));
}
}
netlog!("sock:accept timeout id={}", id);
write_tlv_void(res, res_len)
}
M_SRV_ACCEPT_TIMEOUT => {
let timeout_ms = tlv_parse_i32(slice(args, args_len)).unwrap_or(0).max(0) as u64;
if let Some(ss) = SOCK_SERVERS.lock().unwrap().get(&id) {
let deadline = std::time::Instant::now() + Duration::from_millis(timeout_ms);
loop {
if let Some(cid) = ss.pending.lock().unwrap().pop_front() {
netlog!("sock:acceptTimeout returned conn_id={}", cid);
return write_tlv_handle(T_SOCK_CONN, cid, res, res_len);
}
if std::time::Instant::now() >= deadline { break; }
std::thread::sleep(Duration::from_millis(5));
}
}
netlog!("sock:acceptTimeout timeout id={} ms={}", id, timeout_ms);
write_tlv_void(res, res_len)
}
_ => E_INV_METHOD,
}
}
unsafe fn sock_client_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 {
match m {
M_SC_BIRTH => {
let id = SOCK_CLIENT_ID.fetch_add(1, Ordering::Relaxed);
SOCK_CLIENTS.lock().unwrap().insert(id, SockClientState);
write_u32(id, res, res_len)
}
M_SC_CONNECT => {
// args: host(string), port(i32)
let data = slice(args, args_len);
let (_, argc, mut pos) = tlv_parse_header(data).map_err(|_| ()).or(Err(())).unwrap_or((1,0,4));
if argc < 2 { return E_INV_ARGS; }
let (_t1, s1, p1) = tlv_parse_entry_hdr(data, pos).map_err(|_| ()).or(Err(())).unwrap_or((0,0,0));
if data[pos] != 6 { return E_INV_ARGS; }
let host = std::str::from_utf8(&data[p1..p1+s1]).map_err(|_| ()).or(Err(())) .unwrap_or("").to_string();
pos = p1 + s1;
let (_t2, _s2, p2) = tlv_parse_entry_hdr(data, pos).map_err(|_| ()).or(Err(())).unwrap_or((0,0,0));
let port = if data[pos] == 2 { // i32
let mut b=[0u8;4]; b.copy_from_slice(&data[p2..p2+4]); i32::from_le_bytes(b)
} else { return E_INV_ARGS };
let addr = format!("{}:{}", host, port);
match TcpStream::connect(addr) {
Ok(mut stream) => {
stream.set_nonblocking(false).ok();
let conn_id = SOCK_CONN_ID.fetch_add(1, Ordering::Relaxed);
SOCK_CONNS.lock().unwrap().insert(conn_id, SockConnState { stream: Mutex::new(stream) });
netlog!("sock:connect ok conn_id={}", conn_id);
write_tlv_handle(T_SOCK_CONN, conn_id, res, res_len)
}
Err(e) => { netlog!("sock:connect error: {:?}", e); E_ERR }
}
}
_ => E_INV_METHOD,
}
}
unsafe fn sock_conn_invoke(m: u32, id: u32, args: *const u8, args_len: usize, res: *mut u8, res_len: *mut usize) -> i32 {
match m {
M_CONN_BIRTH => {
// not used directly
write_u32(0, res, res_len)
}
M_CONN_SEND => {
let bytes = tlv_parse_bytes(slice(args, args_len)).unwrap_or_default();
if let Some(conn) = SOCK_CONNS.lock().unwrap().get(&id) {
if let Ok(mut s) = conn.stream.lock() { let _ = s.write_all(&bytes); }
netlog!("sock:send id={} n={}", id, bytes.len());
return write_tlv_void(res, res_len);
}
E_INV_HANDLE
}
M_CONN_RECV => {
if let Some(conn) = SOCK_CONNS.lock().unwrap().get(&id) {
if let Ok(mut s) = conn.stream.lock() {
let mut buf = vec![0u8; 4096];
match s.read(&mut buf) {
Ok(n) => { buf.truncate(n); netlog!("sock:recv id={} n={}", id, n); return write_tlv_bytes(&buf, res, res_len); }
Err(_) => return write_tlv_bytes(&[], res, res_len),
}
}
}
E_INV_HANDLE
}
M_CONN_RECV_TIMEOUT => {
let timeout_ms = tlv_parse_i32(slice(args, args_len)).unwrap_or(0).max(0) as u64;
if let Some(conn) = SOCK_CONNS.lock().unwrap().get(&id) {
if let Ok(mut s) = conn.stream.lock() {
let _ = s.set_read_timeout(Some(Duration::from_millis(timeout_ms)));
let mut buf = vec![0u8; 4096];
let resv = s.read(&mut buf);
let _ = s.set_read_timeout(None);
match resv {
Ok(n) => { buf.truncate(n); netlog!("sock:recvTimeout id={} n={} ms={}", id, n, timeout_ms); return write_tlv_bytes(&buf, res, res_len); }
Err(_) => return write_tlv_bytes(&[], res, res_len),
}
}
}
E_INV_HANDLE
}
M_CONN_CLOSE => {
// Drop the stream by removing entry
SOCK_CONNS.lock().unwrap().remove(&id);
write_tlv_void(res, res_len)
}
_ => E_INV_METHOD,
}
}