**Phase 12 第1ラウンド完了** ✅ - 0.24M → 2.39M ops/s (8T, **+896%**) - SEGFAULT → Zero crashes (**100% → 0%**) - futex: 209 → 10 calls (**-95%**) **P0-5: Lock-Free Stage 2 (Slot Claiming)** - Atomic SlotState: `_Atomic SlotState state` - sp_slot_claim_lockfree(): CAS-based UNUSED→ACTIVE transition - acquire_slab() Stage 2: Lock-free claiming (mutex only for metadata) - Result: 2.34M → 2.39M ops/s (+2.5% @ 8T) **Implementation**: - core/hakmem_shared_pool.h: Atomic SlotState definition - core/hakmem_shared_pool.c: - sp_slot_claim_lockfree() (+40 lines) - Atomic helpers: sp_slot_find_unused/mark_active/mark_empty - Stage 2 lock-free integration - Verified via debug logs: STAGE2_LOCKFREE claiming works **Reports**: - MID_LARGE_P0_PHASE_REPORT.md: P0-0 to P0-4 comprehensive summary - MID_LARGE_FINAL_AB_REPORT.md: Complete Phase 12 A/B comparison (17KB) - Performance evolution table - Lock contention analysis - Lessons learned - File inventory **Tiny Baseline Measurement** 📊 - System malloc: 82.9M ops/s (256B) - HAKMEM: 8.88M ops/s (256B) - **Gap: 9.3x slower** (target for next phase) **Next**: Tiny allocator optimization (drain interval, front cache, perf profile) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
862 lines
30 KiB
C
862 lines
30 KiB
C
#include "hakmem_shared_pool.h"
|
||
#include "hakmem_tiny_superslab.h"
|
||
#include "hakmem_tiny_superslab_constants.h"
|
||
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <stdatomic.h>
|
||
#include <stdio.h>
|
||
|
||
// ============================================================================
|
||
// P0 Lock Contention Instrumentation
|
||
// ============================================================================
|
||
static _Atomic uint64_t g_lock_acquire_count = 0; // Total lock acquisitions
|
||
static _Atomic uint64_t g_lock_release_count = 0; // Total lock releases
|
||
static _Atomic uint64_t g_lock_acquire_slab_count = 0; // Locks from acquire_slab path
|
||
static _Atomic uint64_t g_lock_release_slab_count = 0; // Locks from release_slab path
|
||
static int g_lock_stats_enabled = -1; // -1=uninitialized, 0=off, 1=on
|
||
|
||
// Initialize lock stats from environment variable
|
||
static inline void lock_stats_init(void) {
|
||
if (__builtin_expect(g_lock_stats_enabled == -1, 0)) {
|
||
const char* env = getenv("HAKMEM_SHARED_POOL_LOCK_STATS");
|
||
g_lock_stats_enabled = (env && *env && *env != '0') ? 1 : 0;
|
||
}
|
||
}
|
||
|
||
// Report lock statistics at shutdown
|
||
static void __attribute__((destructor)) lock_stats_report(void) {
|
||
if (g_lock_stats_enabled != 1) {
|
||
return;
|
||
}
|
||
|
||
uint64_t acquires = atomic_load(&g_lock_acquire_count);
|
||
uint64_t releases = atomic_load(&g_lock_release_count);
|
||
uint64_t acquire_path = atomic_load(&g_lock_acquire_slab_count);
|
||
uint64_t release_path = atomic_load(&g_lock_release_slab_count);
|
||
|
||
fprintf(stderr, "\n=== SHARED POOL LOCK STATISTICS ===\n");
|
||
fprintf(stderr, "Total lock ops: %lu (acquire) + %lu (release) = %lu\n",
|
||
acquires, releases, acquires + releases);
|
||
fprintf(stderr, "Balance: %ld (should be 0)\n",
|
||
(int64_t)acquires - (int64_t)releases);
|
||
fprintf(stderr, "\n--- Breakdown by Code Path ---\n");
|
||
fprintf(stderr, "acquire_slab(): %lu (%.1f%%)\n",
|
||
acquire_path, 100.0 * acquire_path / (acquires ? acquires : 1));
|
||
fprintf(stderr, "release_slab(): %lu (%.1f%%)\n",
|
||
release_path, 100.0 * release_path / (acquires ? acquires : 1));
|
||
fprintf(stderr, "===================================\n");
|
||
}
|
||
|
||
// ============================================================================
|
||
// P0-4: Lock-Free Free Slot List - Node Pool
|
||
// ============================================================================
|
||
|
||
// Pre-allocated node pools (one per class, to avoid malloc/free)
|
||
FreeSlotNode g_free_node_pool[TINY_NUM_CLASSES_SS][MAX_FREE_NODES_PER_CLASS];
|
||
_Atomic uint32_t g_node_alloc_index[TINY_NUM_CLASSES_SS] = {0};
|
||
|
||
// Allocate a node from pool (lock-free, never fails until pool exhausted)
|
||
static inline FreeSlotNode* node_alloc(int class_idx) {
|
||
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) {
|
||
return NULL;
|
||
}
|
||
|
||
uint32_t idx = atomic_fetch_add(&g_node_alloc_index[class_idx], 1);
|
||
if (idx >= MAX_FREE_NODES_PER_CLASS) {
|
||
// Pool exhausted - should not happen in practice
|
||
static _Atomic int warn_once = 0;
|
||
if (atomic_exchange(&warn_once, 1) == 0) {
|
||
fprintf(stderr, "[P0-4 WARN] Node pool exhausted for class %d\n", class_idx);
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
return &g_free_node_pool[class_idx][idx];
|
||
}
|
||
|
||
// ============================================================================
|
||
// Phase 12-2: SharedSuperSlabPool skeleton implementation
|
||
// Goal:
|
||
// - Centralize SuperSlab allocation/registration
|
||
// - Provide acquire_slab/release_slab APIs for later refill/free integration
|
||
// - Keep logic simple & conservative; correctness and observability first.
|
||
//
|
||
// Notes:
|
||
// - Concurrency: protected by g_shared_pool.alloc_lock for now.
|
||
// - class_hints is best-effort: read lock-free, written under lock.
|
||
// - LRU hooks left as no-op placeholders.
|
||
|
||
SharedSuperSlabPool g_shared_pool = {
|
||
.slabs = NULL,
|
||
.capacity = 0,
|
||
.total_count = 0,
|
||
.active_count = 0,
|
||
.alloc_lock = PTHREAD_MUTEX_INITIALIZER,
|
||
.class_hints = { NULL },
|
||
.lru_head = NULL,
|
||
.lru_tail = NULL,
|
||
.lru_count = 0,
|
||
// P0-4: Lock-free free slot lists (zero-initialized atomic pointers)
|
||
.free_slots_lockfree = {{.head = ATOMIC_VAR_INIT(NULL)}},
|
||
// Legacy: mutex-protected free lists
|
||
.free_slots = {{.entries = {{0}}, .count = 0}},
|
||
// Phase 12: SP-SLOT fields
|
||
.ss_metadata = NULL,
|
||
.ss_meta_capacity = 0,
|
||
.ss_meta_count = 0
|
||
};
|
||
|
||
static void
|
||
shared_pool_ensure_capacity_unlocked(uint32_t min_capacity)
|
||
{
|
||
if (g_shared_pool.capacity >= min_capacity) {
|
||
return;
|
||
}
|
||
|
||
uint32_t new_cap = g_shared_pool.capacity ? g_shared_pool.capacity : 16;
|
||
while (new_cap < min_capacity) {
|
||
new_cap *= 2;
|
||
}
|
||
|
||
SuperSlab** new_slabs = (SuperSlab**)realloc(g_shared_pool.slabs,
|
||
new_cap * sizeof(SuperSlab*));
|
||
if (!new_slabs) {
|
||
// Allocation failure: keep old state; caller must handle NULL later.
|
||
return;
|
||
}
|
||
|
||
// Zero new entries to keep scanning logic simple.
|
||
memset(new_slabs + g_shared_pool.capacity, 0,
|
||
(new_cap - g_shared_pool.capacity) * sizeof(SuperSlab*));
|
||
|
||
g_shared_pool.slabs = new_slabs;
|
||
g_shared_pool.capacity = new_cap;
|
||
}
|
||
|
||
void
|
||
shared_pool_init(void)
|
||
{
|
||
// Idempotent init; safe to call from multiple early paths.
|
||
// pthread_mutex_t with static initializer is already valid.
|
||
pthread_mutex_lock(&g_shared_pool.alloc_lock);
|
||
if (g_shared_pool.capacity == 0 && g_shared_pool.slabs == NULL) {
|
||
shared_pool_ensure_capacity_unlocked(16);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
}
|
||
|
||
// ============================================================================
|
||
// Phase 12: SP-SLOT Box - Modular Helper Functions
|
||
// ============================================================================
|
||
|
||
// ---------- Layer 1: Slot Operations (Low-level) ----------
|
||
|
||
// Find first unused slot in SharedSSMeta
|
||
// P0-5: Uses atomic load for state check
|
||
// Returns: slot_idx on success, -1 if no unused slots
|
||
static int sp_slot_find_unused(SharedSSMeta* meta) {
|
||
if (!meta) return -1;
|
||
|
||
for (int i = 0; i < meta->total_slots; i++) {
|
||
SlotState state = atomic_load_explicit(&meta->slots[i].state, memory_order_acquire);
|
||
if (state == SLOT_UNUSED) {
|
||
return i;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
// Mark slot as ACTIVE (UNUSED→ACTIVE or EMPTY→ACTIVE)
|
||
// P0-5: Uses atomic store for state transition (caller must hold mutex!)
|
||
// Returns: 0 on success, -1 on error
|
||
static int sp_slot_mark_active(SharedSSMeta* meta, int slot_idx, int class_idx) {
|
||
if (!meta || slot_idx < 0 || slot_idx >= meta->total_slots) return -1;
|
||
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) return -1;
|
||
|
||
SharedSlot* slot = &meta->slots[slot_idx];
|
||
|
||
// Load state atomically
|
||
SlotState state = atomic_load_explicit(&slot->state, memory_order_acquire);
|
||
|
||
// Transition: UNUSED→ACTIVE or EMPTY→ACTIVE
|
||
if (state == SLOT_UNUSED || state == SLOT_EMPTY) {
|
||
atomic_store_explicit(&slot->state, SLOT_ACTIVE, memory_order_release);
|
||
slot->class_idx = (uint8_t)class_idx;
|
||
slot->slab_idx = (uint8_t)slot_idx;
|
||
meta->active_slots++;
|
||
return 0;
|
||
}
|
||
|
||
return -1; // Already ACTIVE or invalid state
|
||
}
|
||
|
||
// Mark slot as EMPTY (ACTIVE→EMPTY)
|
||
// P0-5: Uses atomic store for state transition (caller must hold mutex!)
|
||
// Returns: 0 on success, -1 on error
|
||
static int sp_slot_mark_empty(SharedSSMeta* meta, int slot_idx) {
|
||
if (!meta || slot_idx < 0 || slot_idx >= meta->total_slots) return -1;
|
||
|
||
SharedSlot* slot = &meta->slots[slot_idx];
|
||
|
||
// Load state atomically
|
||
SlotState state = atomic_load_explicit(&slot->state, memory_order_acquire);
|
||
|
||
if (state == SLOT_ACTIVE) {
|
||
atomic_store_explicit(&slot->state, SLOT_EMPTY, memory_order_release);
|
||
if (meta->active_slots > 0) {
|
||
meta->active_slots--;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
return -1; // Not ACTIVE
|
||
}
|
||
|
||
// ---------- Layer 2: Metadata Management (Mid-level) ----------
|
||
|
||
// Ensure ss_metadata array has capacity for at least min_count entries
|
||
// Caller must hold alloc_lock
|
||
// Returns: 0 on success, -1 on allocation failure
|
||
static int sp_meta_ensure_capacity(uint32_t min_count) {
|
||
if (g_shared_pool.ss_meta_capacity >= min_count) {
|
||
return 0;
|
||
}
|
||
|
||
uint32_t new_cap = g_shared_pool.ss_meta_capacity ? g_shared_pool.ss_meta_capacity : 16;
|
||
while (new_cap < min_count) {
|
||
new_cap *= 2;
|
||
}
|
||
|
||
SharedSSMeta* new_meta = (SharedSSMeta*)realloc(
|
||
g_shared_pool.ss_metadata,
|
||
new_cap * sizeof(SharedSSMeta)
|
||
);
|
||
if (!new_meta) {
|
||
return -1;
|
||
}
|
||
|
||
// Zero new entries
|
||
memset(new_meta + g_shared_pool.ss_meta_capacity, 0,
|
||
(new_cap - g_shared_pool.ss_meta_capacity) * sizeof(SharedSSMeta));
|
||
|
||
g_shared_pool.ss_metadata = new_meta;
|
||
g_shared_pool.ss_meta_capacity = new_cap;
|
||
return 0;
|
||
}
|
||
|
||
// Find SharedSSMeta for given SuperSlab, or create if not exists
|
||
// Caller must hold alloc_lock
|
||
// Returns: SharedSSMeta* on success, NULL on error
|
||
static SharedSSMeta* sp_meta_find_or_create(SuperSlab* ss) {
|
||
if (!ss) return NULL;
|
||
|
||
// Search existing metadata
|
||
for (uint32_t i = 0; i < g_shared_pool.ss_meta_count; i++) {
|
||
if (g_shared_pool.ss_metadata[i].ss == ss) {
|
||
return &g_shared_pool.ss_metadata[i];
|
||
}
|
||
}
|
||
|
||
// Create new metadata entry
|
||
if (sp_meta_ensure_capacity(g_shared_pool.ss_meta_count + 1) != 0) {
|
||
return NULL;
|
||
}
|
||
|
||
SharedSSMeta* meta = &g_shared_pool.ss_metadata[g_shared_pool.ss_meta_count];
|
||
meta->ss = ss;
|
||
meta->total_slots = (uint8_t)ss_slabs_capacity(ss);
|
||
meta->active_slots = 0;
|
||
|
||
// Initialize all slots as UNUSED
|
||
// P0-5: Use atomic store for state initialization
|
||
for (int i = 0; i < meta->total_slots; i++) {
|
||
atomic_store_explicit(&meta->slots[i].state, SLOT_UNUSED, memory_order_relaxed);
|
||
meta->slots[i].class_idx = 0;
|
||
meta->slots[i].slab_idx = (uint8_t)i;
|
||
}
|
||
|
||
g_shared_pool.ss_meta_count++;
|
||
return meta;
|
||
}
|
||
|
||
// ---------- Layer 3: Free List Management ----------
|
||
|
||
// Push empty slot to per-class free list
|
||
// Caller must hold alloc_lock
|
||
// Returns: 0 on success, -1 if list is full
|
||
static int sp_freelist_push(int class_idx, SharedSSMeta* meta, int slot_idx) {
|
||
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) return -1;
|
||
if (!meta || slot_idx < 0 || slot_idx >= meta->total_slots) return -1;
|
||
|
||
FreeSlotList* list = &g_shared_pool.free_slots[class_idx];
|
||
|
||
if (list->count >= MAX_FREE_SLOTS_PER_CLASS) {
|
||
return -1; // List full
|
||
}
|
||
|
||
list->entries[list->count].meta = meta;
|
||
list->entries[list->count].slot_idx = (uint8_t)slot_idx;
|
||
list->count++;
|
||
return 0;
|
||
}
|
||
|
||
// Pop empty slot from per-class free list
|
||
// Caller must hold alloc_lock
|
||
// Returns: 1 if popped (out params filled), 0 if list empty
|
||
static int sp_freelist_pop(int class_idx, SharedSSMeta** out_meta, int* out_slot_idx) {
|
||
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) return 0;
|
||
if (!out_meta || !out_slot_idx) return 0;
|
||
|
||
FreeSlotList* list = &g_shared_pool.free_slots[class_idx];
|
||
|
||
if (list->count == 0) {
|
||
return 0; // List empty
|
||
}
|
||
|
||
// Pop from end (LIFO for cache locality)
|
||
list->count--;
|
||
*out_meta = list->entries[list->count].meta;
|
||
*out_slot_idx = list->entries[list->count].slot_idx;
|
||
return 1;
|
||
}
|
||
|
||
// ============================================================================
|
||
// P0-5: Lock-Free Slot Claiming (Stage 2 Optimization)
|
||
// ============================================================================
|
||
|
||
// Try to claim an UNUSED slot via lock-free CAS
|
||
// Returns: slot_idx on success, -1 if no UNUSED slots available
|
||
// LOCK-FREE: Can be called from any thread without mutex
|
||
static int sp_slot_claim_lockfree(SharedSSMeta* meta, int class_idx) {
|
||
if (!meta) return -1;
|
||
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) return -1;
|
||
|
||
// Scan all slots for UNUSED state
|
||
for (int i = 0; i < meta->total_slots; i++) {
|
||
SlotState expected = SLOT_UNUSED;
|
||
|
||
// Try to claim this slot atomically (UNUSED → ACTIVE)
|
||
if (atomic_compare_exchange_strong_explicit(
|
||
&meta->slots[i].state,
|
||
&expected,
|
||
SLOT_ACTIVE,
|
||
memory_order_acq_rel, // Success: acquire+release semantics
|
||
memory_order_relaxed // Failure: just retry next slot
|
||
)) {
|
||
// Successfully claimed! Update non-atomic fields
|
||
// (Safe because we now own this slot)
|
||
meta->slots[i].class_idx = (uint8_t)class_idx;
|
||
meta->slots[i].slab_idx = (uint8_t)i;
|
||
|
||
// Increment active_slots counter atomically
|
||
// (Multiple threads may claim slots concurrently)
|
||
atomic_fetch_add_explicit(
|
||
(_Atomic uint8_t*)&meta->active_slots, 1,
|
||
memory_order_relaxed
|
||
);
|
||
|
||
return i; // Return claimed slot index
|
||
}
|
||
|
||
// CAS failed (slot was not UNUSED) - continue to next slot
|
||
}
|
||
|
||
return -1; // No UNUSED slots available
|
||
}
|
||
|
||
// ============================================================================
|
||
// P0-4: Lock-Free Free Slot List Operations
|
||
// ============================================================================
|
||
|
||
// Push empty slot to lock-free per-class free list (LIFO)
|
||
// LOCK-FREE: Can be called from any thread without mutex
|
||
// Returns: 0 on success, -1 on failure (node pool exhausted)
|
||
static int sp_freelist_push_lockfree(int class_idx, SharedSSMeta* meta, int slot_idx) {
|
||
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) return -1;
|
||
if (!meta || slot_idx < 0 || slot_idx >= meta->total_slots) return -1;
|
||
|
||
// Allocate node from pool
|
||
FreeSlotNode* node = node_alloc(class_idx);
|
||
if (!node) {
|
||
return -1; // Pool exhausted
|
||
}
|
||
|
||
// Fill node data
|
||
node->meta = meta;
|
||
node->slot_idx = (uint8_t)slot_idx;
|
||
|
||
// Lock-free LIFO push using CAS loop
|
||
LockFreeFreeList* list = &g_shared_pool.free_slots_lockfree[class_idx];
|
||
FreeSlotNode* old_head = atomic_load_explicit(&list->head, memory_order_relaxed);
|
||
|
||
do {
|
||
node->next = old_head;
|
||
} while (!atomic_compare_exchange_weak_explicit(
|
||
&list->head, &old_head, node,
|
||
memory_order_release, // Success: publish node to other threads
|
||
memory_order_relaxed // Failure: retry with updated old_head
|
||
));
|
||
|
||
return 0; // Success
|
||
}
|
||
|
||
// Pop empty slot from lock-free per-class free list (LIFO)
|
||
// LOCK-FREE: Can be called from any thread without mutex
|
||
// Returns: 1 if popped (out params filled), 0 if list empty
|
||
static int sp_freelist_pop_lockfree(int class_idx, SharedSSMeta** out_meta, int* out_slot_idx) {
|
||
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) return 0;
|
||
if (!out_meta || !out_slot_idx) return 0;
|
||
|
||
LockFreeFreeList* list = &g_shared_pool.free_slots_lockfree[class_idx];
|
||
FreeSlotNode* old_head = atomic_load_explicit(&list->head, memory_order_acquire);
|
||
|
||
// Lock-free LIFO pop using CAS loop
|
||
do {
|
||
if (old_head == NULL) {
|
||
return 0; // List empty
|
||
}
|
||
} while (!atomic_compare_exchange_weak_explicit(
|
||
&list->head, &old_head, old_head->next,
|
||
memory_order_acquire, // Success: acquire node data
|
||
memory_order_acquire // Failure: retry with updated old_head
|
||
));
|
||
|
||
// Extract data from popped node
|
||
*out_meta = old_head->meta;
|
||
*out_slot_idx = old_head->slot_idx;
|
||
|
||
// NOTE: We do NOT free the node back to pool (no node recycling yet)
|
||
// This is acceptable because MAX_FREE_NODES_PER_CLASS (512) is generous
|
||
// and workloads typically don't push/pop the same slot repeatedly
|
||
|
||
return 1; // Success
|
||
}
|
||
|
||
/*
|
||
* Internal: allocate and register a new SuperSlab for the shared pool.
|
||
*
|
||
* Phase 12 NOTE:
|
||
* - We MUST use the real superslab_allocate() path so that:
|
||
* - backing memory is a full SuperSlab region (1–2MB),
|
||
* - header/layout are initialized correctly,
|
||
* - registry integration stays consistent.
|
||
* - shared_pool is responsible only for:
|
||
* - tracking pointers,
|
||
* - marking per-slab class_idx as UNASSIGNED initially.
|
||
* It does NOT bypass registry/LRU.
|
||
*
|
||
* Caller must hold alloc_lock.
|
||
*/
|
||
static SuperSlab*
|
||
shared_pool_allocate_superslab_unlocked(void)
|
||
{
|
||
// Use size_class 0 as a neutral hint; Phase 12 per-slab class_idx is authoritative.
|
||
extern SuperSlab* superslab_allocate(uint8_t size_class);
|
||
SuperSlab* ss = superslab_allocate(0);
|
||
if (!ss) {
|
||
return NULL;
|
||
}
|
||
|
||
// superslab_allocate() already:
|
||
// - zeroes slab metadata / remote queues,
|
||
// - sets magic/lg_size/etc,
|
||
// - registers in global registry.
|
||
// For shared-pool semantics we normalize all slab class_idx to UNASSIGNED.
|
||
int max_slabs = ss_slabs_capacity(ss);
|
||
for (int i = 0; i < max_slabs; i++) {
|
||
ss->slabs[i].class_idx = 255; // UNASSIGNED
|
||
}
|
||
|
||
if (g_shared_pool.total_count >= g_shared_pool.capacity) {
|
||
shared_pool_ensure_capacity_unlocked(g_shared_pool.total_count + 1);
|
||
if (g_shared_pool.total_count >= g_shared_pool.capacity) {
|
||
// Pool table expansion failed; leave ss alive (registry-owned),
|
||
// but do not treat it as part of shared_pool.
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
g_shared_pool.slabs[g_shared_pool.total_count] = ss;
|
||
g_shared_pool.total_count++;
|
||
// Not counted as active until at least one slab is assigned.
|
||
return ss;
|
||
}
|
||
|
||
SuperSlab*
|
||
shared_pool_acquire_superslab(void)
|
||
{
|
||
// Phase 12 debug safety:
|
||
// If shared backend is disabled at Box API level, this function SHOULD NOT be called.
|
||
// But since bench currently SEGVs here even with legacy forced, treat this as a hard guard:
|
||
// we early-return error instead of touching potentially-bad state.
|
||
//
|
||
// This isolates shared_pool from the current crash so we can validate legacy path first.
|
||
// FIXED: Remove the return -1; that was preventing operation
|
||
|
||
shared_pool_init();
|
||
|
||
pthread_mutex_lock(&g_shared_pool.alloc_lock);
|
||
|
||
// For now, always allocate a fresh SuperSlab and register it.
|
||
// More advanced reuse/GC comes later.
|
||
SuperSlab* ss = shared_pool_allocate_superslab_unlocked();
|
||
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return ss;
|
||
}
|
||
|
||
// ---------- Layer 4: Public API (High-level) ----------
|
||
|
||
int
|
||
shared_pool_acquire_slab(int class_idx, SuperSlab** ss_out, int* slab_idx_out)
|
||
{
|
||
// Phase 12: SP-SLOT Box - 3-Stage Acquire Logic
|
||
//
|
||
// Stage 1: Reuse EMPTY slots from per-class free list (EMPTY→ACTIVE)
|
||
// Stage 2: Find UNUSED slots in existing SuperSlabs
|
||
// Stage 3: Get new SuperSlab (LRU pop or mmap)
|
||
//
|
||
// Invariants:
|
||
// - On success: *ss_out != NULL, 0 <= *slab_idx_out < total_slots
|
||
// - The chosen slab has meta->class_idx == class_idx
|
||
|
||
if (!ss_out || !slab_idx_out) {
|
||
return -1;
|
||
}
|
||
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) {
|
||
return -1;
|
||
}
|
||
|
||
shared_pool_init();
|
||
|
||
// Debug logging
|
||
static int dbg_acquire = -1;
|
||
if (__builtin_expect(dbg_acquire == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_SS_ACQUIRE_DEBUG");
|
||
dbg_acquire = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
|
||
// ========== Stage 1 (Lock-Free): Try to reuse EMPTY slots ==========
|
||
// P0-4: Lock-free pop from per-class free list (no mutex needed!)
|
||
// Best case: Same class freed a slot, reuse immediately (cache-hot)
|
||
SharedSSMeta* reuse_meta = NULL;
|
||
int reuse_slot_idx = -1;
|
||
|
||
if (sp_freelist_pop_lockfree(class_idx, &reuse_meta, &reuse_slot_idx)) {
|
||
// Found EMPTY slot from lock-free list!
|
||
// Now acquire mutex ONLY for slot activation and metadata update
|
||
|
||
// P0 instrumentation: count lock acquisitions
|
||
lock_stats_init();
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_acquire_count, 1);
|
||
atomic_fetch_add(&g_lock_acquire_slab_count, 1);
|
||
}
|
||
|
||
pthread_mutex_lock(&g_shared_pool.alloc_lock);
|
||
|
||
// Activate slot under mutex (slot state transition requires protection)
|
||
if (sp_slot_mark_active(reuse_meta, reuse_slot_idx, class_idx) == 0) {
|
||
SuperSlab* ss = reuse_meta->ss;
|
||
|
||
if (dbg_acquire == 1) {
|
||
fprintf(stderr, "[SP_ACQUIRE_STAGE1_LOCKFREE] class=%d reusing EMPTY slot (ss=%p slab=%d)\n",
|
||
class_idx, (void*)ss, reuse_slot_idx);
|
||
}
|
||
|
||
// Update SuperSlab metadata
|
||
ss->slab_bitmap |= (1u << reuse_slot_idx);
|
||
ss->slabs[reuse_slot_idx].class_idx = (uint8_t)class_idx;
|
||
|
||
if (ss->active_slabs == 0) {
|
||
// Was empty, now active again
|
||
ss->active_slabs = 1;
|
||
g_shared_pool.active_count++;
|
||
}
|
||
|
||
// Update hint
|
||
g_shared_pool.class_hints[class_idx] = ss;
|
||
|
||
*ss_out = ss;
|
||
*slab_idx_out = reuse_slot_idx;
|
||
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return 0; // ✅ Stage 1 (lock-free) success
|
||
}
|
||
|
||
// Slot activation failed (race condition?) - release lock and fall through
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
}
|
||
|
||
// ========== Stage 2 (Lock-Free): Try to claim UNUSED slots ==========
|
||
// P0-5: Lock-free atomic CAS claiming (no mutex needed for slot state transition!)
|
||
// Read ss_meta_count atomically (safe: only grows, never shrinks)
|
||
uint32_t meta_count = atomic_load_explicit(
|
||
(_Atomic uint32_t*)&g_shared_pool.ss_meta_count,
|
||
memory_order_acquire
|
||
);
|
||
|
||
for (uint32_t i = 0; i < meta_count; i++) {
|
||
SharedSSMeta* meta = &g_shared_pool.ss_metadata[i];
|
||
|
||
// Try lock-free claiming (UNUSED → ACTIVE via CAS)
|
||
int claimed_idx = sp_slot_claim_lockfree(meta, class_idx);
|
||
if (claimed_idx >= 0) {
|
||
// Successfully claimed slot! Now acquire mutex ONLY for metadata update
|
||
SuperSlab* ss = meta->ss;
|
||
|
||
if (dbg_acquire == 1) {
|
||
fprintf(stderr, "[SP_ACQUIRE_STAGE2_LOCKFREE] class=%d claimed UNUSED slot (ss=%p slab=%d)\n",
|
||
class_idx, (void*)ss, claimed_idx);
|
||
}
|
||
|
||
// P0 instrumentation: count lock acquisitions
|
||
lock_stats_init();
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_acquire_count, 1);
|
||
atomic_fetch_add(&g_lock_acquire_slab_count, 1);
|
||
}
|
||
|
||
pthread_mutex_lock(&g_shared_pool.alloc_lock);
|
||
|
||
// Update SuperSlab metadata under mutex
|
||
ss->slab_bitmap |= (1u << claimed_idx);
|
||
ss->slabs[claimed_idx].class_idx = (uint8_t)class_idx;
|
||
|
||
if (ss->active_slabs == 0) {
|
||
ss->active_slabs = 1;
|
||
g_shared_pool.active_count++;
|
||
}
|
||
|
||
// Update hint
|
||
g_shared_pool.class_hints[class_idx] = ss;
|
||
|
||
*ss_out = ss;
|
||
*slab_idx_out = claimed_idx;
|
||
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return 0; // ✅ Stage 2 (lock-free) success
|
||
}
|
||
|
||
// Claim failed (no UNUSED slots in this meta) - continue to next SuperSlab
|
||
}
|
||
|
||
// ========== Stage 3: Mutex-protected fallback (new SuperSlab allocation) ==========
|
||
// All existing SuperSlabs have no UNUSED slots → need new SuperSlab
|
||
// P0 instrumentation: count lock acquisitions
|
||
lock_stats_init();
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_acquire_count, 1);
|
||
atomic_fetch_add(&g_lock_acquire_slab_count, 1);
|
||
}
|
||
|
||
pthread_mutex_lock(&g_shared_pool.alloc_lock);
|
||
|
||
// ========== Stage 3: Get new SuperSlab ==========
|
||
// Try LRU cache first, then mmap
|
||
SuperSlab* new_ss = NULL;
|
||
|
||
// Stage 3a: Try LRU cache
|
||
extern SuperSlab* hak_ss_lru_pop(uint8_t size_class);
|
||
new_ss = hak_ss_lru_pop((uint8_t)class_idx);
|
||
|
||
int from_lru = (new_ss != NULL);
|
||
|
||
// Stage 3b: If LRU miss, allocate new SuperSlab
|
||
if (!new_ss) {
|
||
new_ss = shared_pool_allocate_superslab_unlocked();
|
||
}
|
||
|
||
if (dbg_acquire == 1 && new_ss) {
|
||
fprintf(stderr, "[SP_ACQUIRE_STAGE3] class=%d new SuperSlab (ss=%p from_lru=%d)\n",
|
||
class_idx, (void*)new_ss, from_lru);
|
||
}
|
||
|
||
if (!new_ss) {
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return -1; // ❌ Out of memory
|
||
}
|
||
|
||
// Create metadata for this new SuperSlab
|
||
SharedSSMeta* new_meta = sp_meta_find_or_create(new_ss);
|
||
if (!new_meta) {
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return -1; // ❌ Metadata allocation failed
|
||
}
|
||
|
||
// Assign first slot to this class
|
||
int first_slot = 0;
|
||
if (sp_slot_mark_active(new_meta, first_slot, class_idx) != 0) {
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return -1; // ❌ Should not happen
|
||
}
|
||
|
||
// Update SuperSlab metadata
|
||
new_ss->slab_bitmap |= (1u << first_slot);
|
||
new_ss->slabs[first_slot].class_idx = (uint8_t)class_idx;
|
||
new_ss->active_slabs = 1;
|
||
g_shared_pool.active_count++;
|
||
|
||
// Update hint
|
||
g_shared_pool.class_hints[class_idx] = new_ss;
|
||
|
||
*ss_out = new_ss;
|
||
*slab_idx_out = first_slot;
|
||
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return 0; // ✅ Stage 3 success
|
||
}
|
||
|
||
void
|
||
shared_pool_release_slab(SuperSlab* ss, int slab_idx)
|
||
{
|
||
// Phase 12: SP-SLOT Box - Slot-based Release
|
||
//
|
||
// Flow:
|
||
// 1. Validate inputs and check meta->used == 0
|
||
// 2. Find SharedSSMeta for this SuperSlab
|
||
// 3. Mark slot ACTIVE → EMPTY
|
||
// 4. Push to per-class free list (enables same-class reuse)
|
||
// 5. If all slots EMPTY → superslab_free() → LRU cache
|
||
|
||
if (!ss) {
|
||
return;
|
||
}
|
||
if (slab_idx < 0 || slab_idx >= SLABS_PER_SUPERSLAB_MAX) {
|
||
return;
|
||
}
|
||
|
||
// Debug logging
|
||
static int dbg = -1;
|
||
if (__builtin_expect(dbg == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_SS_FREE_DEBUG");
|
||
dbg = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
|
||
// P0 instrumentation: count lock acquisitions
|
||
lock_stats_init();
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_acquire_count, 1);
|
||
atomic_fetch_add(&g_lock_release_slab_count, 1);
|
||
}
|
||
|
||
pthread_mutex_lock(&g_shared_pool.alloc_lock);
|
||
|
||
TinySlabMeta* slab_meta = &ss->slabs[slab_idx];
|
||
if (slab_meta->used != 0) {
|
||
// Not actually empty; nothing to do
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return;
|
||
}
|
||
|
||
uint8_t class_idx = slab_meta->class_idx;
|
||
|
||
if (dbg == 1) {
|
||
fprintf(stderr, "[SP_SLOT_RELEASE] ss=%p slab_idx=%d class=%d used=0 (marking EMPTY)\n",
|
||
(void*)ss, slab_idx, class_idx);
|
||
}
|
||
|
||
// Find SharedSSMeta for this SuperSlab
|
||
SharedSSMeta* sp_meta = NULL;
|
||
for (uint32_t i = 0; i < g_shared_pool.ss_meta_count; i++) {
|
||
if (g_shared_pool.ss_metadata[i].ss == ss) {
|
||
sp_meta = &g_shared_pool.ss_metadata[i];
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!sp_meta) {
|
||
// SuperSlab not in SP-SLOT system yet - create metadata
|
||
sp_meta = sp_meta_find_or_create(ss);
|
||
if (!sp_meta) {
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return; // Failed to create metadata
|
||
}
|
||
}
|
||
|
||
// Mark slot as EMPTY (ACTIVE → EMPTY)
|
||
if (sp_slot_mark_empty(sp_meta, slab_idx) != 0) {
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
return; // Slot wasn't ACTIVE
|
||
}
|
||
|
||
// Update SuperSlab metadata
|
||
uint32_t bit = (1u << slab_idx);
|
||
if (ss->slab_bitmap & bit) {
|
||
ss->slab_bitmap &= ~bit;
|
||
slab_meta->class_idx = 255; // UNASSIGNED
|
||
|
||
if (ss->active_slabs > 0) {
|
||
ss->active_slabs--;
|
||
if (ss->active_slabs == 0 && g_shared_pool.active_count > 0) {
|
||
g_shared_pool.active_count--;
|
||
}
|
||
}
|
||
}
|
||
|
||
// P0-4: Push to lock-free per-class free list (enables reuse by same class)
|
||
// Note: push BEFORE releasing mutex (slot state already updated under lock)
|
||
if (class_idx < TINY_NUM_CLASSES_SS) {
|
||
sp_freelist_push_lockfree(class_idx, sp_meta, slab_idx);
|
||
|
||
if (dbg == 1) {
|
||
fprintf(stderr, "[SP_SLOT_FREELIST_LOCKFREE] class=%d pushed slot (ss=%p slab=%d) active_slots=%u/%u\n",
|
||
class_idx, (void*)ss, slab_idx,
|
||
sp_meta->active_slots, sp_meta->total_slots);
|
||
}
|
||
}
|
||
|
||
// Check if SuperSlab is now completely empty (all slots EMPTY or UNUSED)
|
||
if (sp_meta->active_slots == 0) {
|
||
if (dbg == 1) {
|
||
fprintf(stderr, "[SP_SLOT_COMPLETELY_EMPTY] ss=%p active_slots=0 (calling superslab_free)\n",
|
||
(void*)ss);
|
||
}
|
||
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
|
||
// Free SuperSlab:
|
||
// 1. Try LRU cache (hak_ss_lru_push) - lazy deallocation
|
||
// 2. Or munmap if LRU is full - eager deallocation
|
||
extern void superslab_free(SuperSlab* ss);
|
||
superslab_free(ss);
|
||
return;
|
||
}
|
||
|
||
if (g_lock_stats_enabled == 1) {
|
||
atomic_fetch_add(&g_lock_release_count, 1);
|
||
}
|
||
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
||
}
|