## Phase 1: Utilization-Aware Superslab Tiering (案B実装済) - Add ss_tier_box.h: Classify SuperSlabs into HOT/DRAINING/FREE based on utilization - HOT (>25%): Accept new allocations - DRAINING (≤25%): Drain only, no new allocs - FREE (0%): Ready for eager munmap - Enhanced shared_pool_release_slab(): - Check tier transition after each slab release - If tier→FREE: Force remaining slots to EMPTY and call superslab_free() immediately - Bypasses LRU cache to prevent registry bloat from accumulating DRAINING SuperSlabs - Test results (bench_random_mixed_hakmem): - 1M iterations: ✅ ~1.03M ops/s (previously passed) - 10M iterations: ✅ ~1.15M ops/s (previously: registry full error) - 50M iterations: ✅ ~1.08M ops/s (stress test) ## Phase 2: Tiny Front Routing Policy (新規Box) - Add tiny_route_box.h/c: Single 8-byte table for class→routing decisions - ROUTE_TINY_ONLY: Tiny front exclusive (no fallback) - ROUTE_TINY_FIRST: Try Tiny, fallback to Pool if fails - ROUTE_POOL_ONLY: Skip Tiny entirely - Profiles via HAKMEM_TINY_PROFILE ENV: - "hot": C0-C3=TINY_ONLY, C4-C6=TINY_FIRST, C7=POOL_ONLY - "conservative" (default): All TINY_FIRST - "off": All POOL_ONLY (disable Tiny) - "full": All TINY_ONLY (microbench mode) - A/B test results (ws=256, 100k ops random_mixed): - Default (conservative): ~2.90M ops/s - hot: ~2.65M ops/s (more conservative) - off: ~2.86M ops/s - full: ~2.98M ops/s (slightly best) ## Design Rationale ### Registry Pressure Fix (案B) - Problem: DRAINING tier SS occupied registry indefinitely - Solution: When total_active_blocks→0, immediately free to clear registry slot - Result: No more "registry full" errors under stress ### Routing Policy Box (新) - Problem: Tiny front optimization scattered across ENV/branches - Solution: Centralize routing in single table, select profiles via ENV - Benefit: Safe A/B testing without touching hot path code - Future: Integrate with RSS budget/learning layers for dynamic profile switching ## Next Steps (性能最適化) - Profile Tiny front internals (TLS SLL, FastCache, Superslab backend latency) - Identify bottleneck between current ~2.9M ops/s and mimalloc ~100M ops/s - Consider: - Reduce shared pool lock contention - Optimize unified cache hit rate - Streamline Superslab carving logic 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
277 lines
10 KiB
C
277 lines
10 KiB
C
#include "hakmem_shared_pool_internal.h"
|
|
#include "hakmem_debug_master.h"
|
|
#include "box/ss_slab_meta_box.h"
|
|
#include "box/ss_hot_cold_box.h"
|
|
#include "box/ss_tier_box.h" // P-Tier: Utilization-aware tiering
|
|
#include "hakmem_env_cache.h" // Priority-2: ENV cache
|
|
#include "superslab/superslab_inline.h" // superslab_ref_get guard for TLS pins
|
|
#include "box/ss_release_guard_box.h" // Box: SuperSlab Release Guard
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdatomic.h>
|
|
|
|
void
|
|
shared_pool_release_slab(SuperSlab* ss, int slab_idx)
|
|
{
|
|
// Phase 12: SP-SLOT Box - Slot-based Release
|
|
//
|
|
// Flow:
|
|
// 1. Validate inputs and check meta->used == 0
|
|
// 2. Find SharedSSMeta for this SuperSlab
|
|
// 3. Mark slot ACTIVE → EMPTY
|
|
// 4. Push to per-class free list (enables same-class reuse)
|
|
// 5. If all slots EMPTY → superslab_free() → LRU cache
|
|
|
|
if (!ss) {
|
|
return;
|
|
}
|
|
if (slab_idx < 0 || slab_idx >= SLABS_PER_SUPERSLAB_MAX) {
|
|
return;
|
|
}
|
|
|
|
// Phase 9-2 FIX: Promote Legacy SuperSlabs to Shared Pool on first recycle
|
|
// If we are recycling a slot from a Legacy SS, we must remove it from the
|
|
// Legacy list (g_superslab_heads) to prevent Legacy Backend from allocating
|
|
// from it simultaneously (Double Allocation Race).
|
|
// This effectively transfers ownership to Shared Pool.
|
|
extern void remove_superslab_from_legacy_head(SuperSlab* ss);
|
|
remove_superslab_from_legacy_head(ss);
|
|
|
|
// BUGFIX: Re-check used count after removal. Legacy Backend might have
|
|
// allocated from this slab while we were waiting for the lock in remove().
|
|
TinySlabMeta* slab_meta = &ss->slabs[slab_idx];
|
|
if (atomic_load_explicit(&slab_meta->used, memory_order_acquire) != 0) {
|
|
// Legacy Backend stole this slab. It's now an orphan (removed from list).
|
|
// We abort recycling. It will be recycled when Legacy frees it later.
|
|
return;
|
|
}
|
|
|
|
// Debug logging
|
|
#if !HAKMEM_BUILD_RELEASE
|
|
// Priority-2: Use cached ENV
|
|
int dbg = HAK_ENV_SS_FREE_DEBUG();
|
|
#else
|
|
static const int dbg = 0;
|
|
#endif
|
|
|
|
// P0 instrumentation: count lock acquisitions
|
|
lock_stats_init();
|
|
if (g_lock_stats_enabled == 1) {
|
|
atomic_fetch_add(&g_lock_stats_enabled, 1);
|
|
atomic_fetch_add(&g_lock_release_slab_count, 1);
|
|
}
|
|
|
|
pthread_mutex_lock(&g_shared_pool.alloc_lock);
|
|
|
|
// TinySlabMeta* slab_meta = &ss->slabs[slab_idx]; // Already declared above
|
|
if (slab_meta->used != 0) {
|
|
// Not actually empty (double check under lock)
|
|
if (g_lock_stats_enabled == 1) {
|
|
atomic_fetch_add(&g_lock_release_count, 1);
|
|
}
|
|
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
|
return;
|
|
}
|
|
|
|
uint8_t class_idx = slab_meta->class_idx;
|
|
|
|
// Guard: if SuperSlab is pinned (TLS/remote references), defer release to avoid
|
|
// class_map=255 while pointers are still in-flight.
|
|
uint32_t ss_refs_guard = superslab_ref_get(ss);
|
|
if (ss_refs_guard != 0) {
|
|
#if !HAKMEM_BUILD_RELEASE
|
|
if (dbg == 1) {
|
|
fprintf(stderr,
|
|
"[SP_SLOT_RELEASE_SKIP_PINNED] ss=%p slab_idx=%d class=%d refcount=%u\n",
|
|
(void*)ss, slab_idx, class_idx, (unsigned)ss_refs_guard);
|
|
}
|
|
#endif
|
|
if (g_lock_stats_enabled == 1) {
|
|
atomic_fetch_add(&g_lock_release_count, 1);
|
|
}
|
|
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
|
return;
|
|
}
|
|
|
|
#if !HAKMEM_BUILD_RELEASE
|
|
if (dbg == 1) {
|
|
fprintf(stderr, "[SP_SLOT_RELEASE] ss=%p slab_idx=%d class=%d used=0 (marking EMPTY)\n",
|
|
(void*)ss, slab_idx, class_idx);
|
|
}
|
|
#endif
|
|
|
|
// Find SharedSSMeta for this SuperSlab
|
|
SharedSSMeta* sp_meta = NULL;
|
|
uint32_t count = atomic_load_explicit(&g_shared_pool.ss_meta_count, memory_order_relaxed);
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
// RACE FIX: Load pointer atomically
|
|
SuperSlab* meta_ss = atomic_load_explicit(&g_shared_pool.ss_metadata[i].ss, memory_order_relaxed);
|
|
if (meta_ss == ss) {
|
|
sp_meta = &g_shared_pool.ss_metadata[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!sp_meta) {
|
|
// SuperSlab not in SP-SLOT system yet - create metadata
|
|
sp_meta = sp_meta_find_or_create(ss);
|
|
if (!sp_meta) {
|
|
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
|
return; // Failed to create metadata
|
|
}
|
|
}
|
|
|
|
// Mark slot as EMPTY (ACTIVE → EMPTY)
|
|
uint32_t slab_bit = (1u << slab_idx);
|
|
SlotState slot_state = atomic_load_explicit(
|
|
&sp_meta->slots[slab_idx].state,
|
|
memory_order_acquire);
|
|
if (slot_state != SLOT_ACTIVE && (ss->slab_bitmap & slab_bit)) {
|
|
// Legacy path import: rebuild slot states from SuperSlab bitmap/class_map
|
|
sp_meta_sync_slots_from_ss(sp_meta, ss);
|
|
slot_state = atomic_load_explicit(
|
|
&sp_meta->slots[slab_idx].state,
|
|
memory_order_acquire);
|
|
}
|
|
|
|
if (slot_state != SLOT_ACTIVE || sp_slot_mark_empty(sp_meta, slab_idx) != 0) {
|
|
if (g_lock_stats_enabled == 1) {
|
|
atomic_fetch_add(&g_lock_release_count, 1);
|
|
}
|
|
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
|
return; // Slot wasn't ACTIVE
|
|
}
|
|
|
|
// Update SuperSlab metadata
|
|
uint32_t bit = (1u << slab_idx);
|
|
if (ss->slab_bitmap & bit) {
|
|
ss->slab_bitmap &= ~bit;
|
|
slab_meta->class_idx = 255; // UNASSIGNED
|
|
// P1.1: Mark class_map as UNASSIGNED when releasing slab
|
|
ss->class_map[slab_idx] = 255;
|
|
|
|
if (ss->active_slabs > 0) {
|
|
ss->active_slabs--;
|
|
if (ss->active_slabs == 0 && g_shared_pool.active_count > 0) {
|
|
g_shared_pool.active_count--;
|
|
}
|
|
}
|
|
if (class_idx < TINY_NUM_CLASSES_SS &&
|
|
g_shared_pool.class_active_slots[class_idx] > 0) {
|
|
g_shared_pool.class_active_slots[class_idx]--;
|
|
}
|
|
}
|
|
|
|
// P0-4: Push to lock-free per-class free list (enables reuse by same class)
|
|
// Note: push BEFORE releasing mutex (slot state already updated under lock)
|
|
if (class_idx < TINY_NUM_CLASSES_SS) {
|
|
sp_freelist_push_lockfree(class_idx, sp_meta, slab_idx);
|
|
|
|
#if !HAKMEM_BUILD_RELEASE
|
|
if (dbg == 1) {
|
|
fprintf(stderr, "[SP_SLOT_FREELIST_LOCKFREE] class=%d pushed slot (ss=%p slab=%d) active_slots=%u/%u\n",
|
|
class_idx, (void*)ss, slab_idx,
|
|
sp_meta->active_slots, sp_meta->total_slots);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// P-Tier: Check tier transition after releasing slab
|
|
// This may transition HOT → DRAINING if utilization dropped below threshold
|
|
// or DRAINING → FREE if utilization reached 0
|
|
ss_tier_check_transition(ss);
|
|
|
|
// P-Tier Step B: Eager FREE eviction
|
|
// If tier transitioned to FREE (total_active_blocks == 0), immediately try to
|
|
// release the SuperSlab regardless of active_slots. This prevents registry bloat.
|
|
SSTier current_tier = ss_tier_get(ss);
|
|
if (current_tier == SS_TIER_FREE) {
|
|
// Double-check: total_active_blocks should be 0 for FREE tier
|
|
uint32_t active_blocks = atomic_load_explicit(&ss->total_active_blocks, memory_order_acquire);
|
|
if (active_blocks == 0 && ss_release_guard_superslab_can_free(ss)) {
|
|
#if !HAKMEM_BUILD_RELEASE
|
|
if (dbg == 1) {
|
|
fprintf(stderr, "[SP_TIER_FREE_EAGER] ss=%p tier=FREE active_slots=%u -> immediate free\n",
|
|
(void*)ss, sp_meta->active_slots);
|
|
}
|
|
#endif
|
|
|
|
// Force all remaining slots to EMPTY state for clean metadata
|
|
for (uint32_t i = 0; i < sp_meta->total_slots; i++) {
|
|
SlotState st = atomic_load_explicit(&sp_meta->slots[i].state, memory_order_relaxed);
|
|
if (st == SLOT_ACTIVE) {
|
|
atomic_store_explicit(&sp_meta->slots[i].state, SLOT_EMPTY, memory_order_relaxed);
|
|
}
|
|
}
|
|
sp_meta->active_slots = 0;
|
|
|
|
if (g_lock_stats_enabled == 1) {
|
|
atomic_fetch_add(&g_lock_release_count, 1);
|
|
}
|
|
|
|
// Clear meta->ss before unlocking (race prevention)
|
|
atomic_store_explicit(&sp_meta->ss, NULL, memory_order_release);
|
|
|
|
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
|
|
|
// Free SuperSlab immediately (bypasses normal active_slots==0 check)
|
|
extern void superslab_free(SuperSlab* ss);
|
|
superslab_free(ss);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check if SuperSlab is now completely empty (all slots EMPTY or UNUSED)
|
|
if (sp_meta->active_slots == 0) {
|
|
#if !HAKMEM_BUILD_RELEASE
|
|
if (dbg == 1) {
|
|
fprintf(stderr, "[SP_SLOT_COMPLETELY_EMPTY] ss=%p active_slots=0 (calling superslab_free)\n",
|
|
(void*)ss);
|
|
}
|
|
#endif
|
|
|
|
if (g_lock_stats_enabled == 1) {
|
|
atomic_fetch_add(&g_lock_release_count, 1);
|
|
}
|
|
|
|
// RACE FIX: Set meta->ss to NULL BEFORE unlocking mutex
|
|
// This prevents Stage 2 from accessing freed SuperSlab
|
|
atomic_store_explicit(&sp_meta->ss, NULL, memory_order_release);
|
|
|
|
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
|
|
|
// Remove from legacy backend list (moved to top of function)
|
|
// extern void remove_superslab_from_legacy_head(SuperSlab* ss);
|
|
// remove_superslab_from_legacy_head(ss);
|
|
|
|
// Free SuperSlab:
|
|
// 1. Try LRU cache (hak_ss_lru_push) - lazy deallocation
|
|
// 2. Or munmap if LRU is full - eager deallocation
|
|
|
|
// BUGFIX: Double check total_active_blocks and refcount. Legacy Backend might have
|
|
// allocated from ANOTHER slab in this SS just before we removed it.
|
|
// If so, we must NOT free the SS.
|
|
if (ss_release_guard_superslab_can_free(ss)) {
|
|
extern void superslab_free(SuperSlab* ss);
|
|
superslab_free(ss);
|
|
} else {
|
|
#if !HAKMEM_BUILD_RELEASE
|
|
if (dbg == 1) {
|
|
fprintf(stderr,
|
|
"[SP_SLOT_RELEASE] SKIP free ss=%p: total_active_blocks=%u refcount=%u\n",
|
|
(void*)ss,
|
|
(unsigned)active_blocks,
|
|
(unsigned)ss_refs);
|
|
}
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (g_lock_stats_enabled == 1) {
|
|
atomic_fetch_add(&g_lock_release_count, 1);
|
|
}
|
|
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
|
|
}
|