Files
hakmem/core/superslab/superslab_inline.h
Moe Charm (CI) dc9e650db3 Tiny Pool redesign: P0.1, P0.3, P1.1, P1.2 - Out-of-band class_idx lookup
This commit implements the first phase of Tiny Pool redesign based on
ChatGPT architecture review. The goal is to eliminate Header/Next pointer
conflicts by moving class_idx lookup out-of-band (to SuperSlab metadata).

## P0.1: C0(8B) class upgraded to 16B
- Size table changed: {16,32,64,128,256,512,1024,2048} (8 classes)
- LUT updated: 1..16 → class 0, 17..32 → class 1, etc.
- tiny_next_off: C0 now uses offset 1 (header preserved)
- Eliminates edge cases for 8B allocations

## P0.3: Slab reuse guard Box (tls_slab_reuse_guard_box.h)
- New Box for draining TLS SLL before slab reuse
- ENV gate: HAKMEM_TINY_SLAB_REUSE_GUARD=1
- Prevents stale pointers when slabs are recycled
- Follows Box theory: single responsibility, minimal API

## P1.1: SuperSlab class_map addition
- Added uint8_t class_map[SLABS_PER_SUPERSLAB_MAX] to SuperSlab
- Maps slab_idx → class_idx for out-of-band lookup
- Initialized to 255 (UNASSIGNED) on SuperSlab creation
- Set correctly on slab initialization in all backends

## P1.2: Free fast path uses class_map
- ENV gate: HAKMEM_TINY_USE_CLASS_MAP=1
- Free path can now get class_idx from class_map instead of Header
- Falls back to Header read if class_map returns invalid value
- Fixed Legacy Backend dynamic slab initialization bug

## Documentation added
- HAKMEM_ARCHITECTURE_OVERVIEW.md: 4-layer architecture analysis
- TLS_SLL_ARCHITECTURE_INVESTIGATION.md: Root cause analysis
- PTR_LIFECYCLE_TRACE_AND_ROOT_CAUSE_ANALYSIS.md: Pointer tracking
- TINY_REDESIGN_CHECKLIST.md: Implementation roadmap (P0-P3)

## Test results
- Baseline: 70% success rate (30% crash - pre-existing issue)
- class_map enabled: 70% success rate (same as baseline)
- Performance: ~30.5M ops/s (unchanged)

## Next steps (P1.3, P2, P3)
- P1.3: Add meta->active for accurate TLS/freelist sync
- P2: TLS SLL redesign with Box-based counting
- P3: Complete Header out-of-band migration

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-28 13:42:39 +09:00

208 lines
7.2 KiB
C

#ifndef SUPERSLAB_INLINE_H
#define SUPERSLAB_INLINE_H
#include "superslab_types.h"
#include "../tiny_box_geometry.h" // Box 3 geometry helpers (stride/base/capacity)
// Forward declaration for unsafe remote drain used by refill/handle paths
// Implemented in hakmem_tiny_superslab.c
void _ss_remote_drain_to_freelist_unsafe(SuperSlab* ss, int slab_idx, TinySlabMeta* meta);
// Optional debug counter (defined in hakmem_tiny_superslab.c)
extern _Atomic uint64_t g_ss_active_dec_calls;
// ========== Fast SuperSlab Lookup via Mask (Phase 12 optimization) ==========
// Purpose: Replace expensive hak_super_lookup() with O(1) mask calculation
// Invariant: All SuperSlabs are aligned to at least SUPERSLAB_SIZE_MIN (1MB)
// Cost: ~5-10 cycles (vs 50-100 cycles for registry lookup)
//
// ⚠️ SAFETY: Only use when pointer is ALREADY VALIDATED as Tiny allocation!
// This function masks to 1MB boundary and reads memory at that address.
// If the masked address is unmapped, it will SEGFAULT.
// Safe to use: After header magic (0xA0) validation in LARSON_FIX paths
// NOT safe: In tiny_free_fast() or other paths with arbitrary pointers
static inline SuperSlab* ss_fast_lookup(void* ptr)
{
if (__builtin_expect(!ptr, 0)) return NULL;
uintptr_t p = (uintptr_t)ptr;
// Step 1: Mask with minimum SuperSlab size (1MB alignment)
// Note: 2MB SuperSlabs are also 1MB aligned, so this works for both
SuperSlab* ss = (SuperSlab*)(p & ~((uintptr_t)SUPERSLAB_SIZE_MIN - 1u));
// Step 2: Validate magic (quick reject for non-SuperSlab memory)
if (__builtin_expect(ss->magic != SUPERSLAB_MAGIC, 0)) {
return NULL;
}
// Step 3: Range check (ptr must be within this SuperSlab)
size_t ss_size = (size_t)1 << ss->lg_size;
if (__builtin_expect(p >= (uintptr_t)ss + ss_size, 0)) {
return NULL;
}
return ss;
}
// Return maximum number of slabs for this SuperSlab based on lg_size.
static inline int ss_slabs_capacity(SuperSlab* ss)
{
if (!ss) return 0;
size_t ss_size = (size_t)1 << ss->lg_size;
return (int)(ss_size / SLAB_SIZE);
}
// Compute slab base pointer for given (ss, slab_idx).
// Box 5 wrapper: delegate to Box 3 canonical geometry helper.
static inline uint8_t* tiny_slab_base_for(SuperSlab* ss, int slab_idx)
{
if (!ss || slab_idx < 0) {
return NULL;
}
return tiny_slab_base_for_geometry(ss, slab_idx);
}
// Compute slab index for a pointer inside ss.
// Box 5 wrapper: inverse of Box 3 geometry (tiny_slab_base_for_geometry).
// Layout (data regions):
// - Slab 0: [ss + SUPERSLAB_SLAB0_DATA_OFFSET, ss + SLAB_SIZE)
// - Slab 1: [ss + 1*SLAB_SIZE, ss + 2*SLAB_SIZE)
// - Slab k: [ss + k*SLAB_SIZE, ss + (k+1)*SLAB_SIZE)
static inline int slab_index_for(SuperSlab* ss, void* ptr)
{
if (!ss || !ptr) {
return -1;
}
uintptr_t base = (uintptr_t)ss;
uintptr_t p = (uintptr_t)ptr;
size_t ss_size = (size_t)1 << ss->lg_size;
// Outside overall SuperSlab range
if (p < base + SUPERSLAB_SLAB0_DATA_OFFSET || p >= base + ss_size) {
return -1;
}
// Slab 0: from first data byte up to the end of first slab
if (p < base + SLAB_SIZE) {
return 0;
}
// Slabs 1+ use simple SLAB_SIZE spacing from SuperSlab base
size_t rel = p - base;
int idx = (int)(rel / SLAB_SIZE);
if (idx < 0 || idx >= SLABS_PER_SUPERSLAB_MAX) {
return -1;
}
return idx;
}
// P1.1: Get class_idx from class_map (out-of-band lookup, avoids reading TinySlabMeta)
// Purpose: Free path optimization - read class_idx without touching cold metadata
// Returns: class_idx (0-7) or 255 if slab is unassigned or invalid
static inline int tiny_get_class_from_ss(SuperSlab* ss, int slab_idx)
{
if (!ss || slab_idx < 0 || slab_idx >= SLABS_PER_SUPERSLAB_MAX) {
return 255; // Invalid input
}
return (int)ss->class_map[slab_idx];
}
// Simple ref helpers used by lifecycle paths.
static inline uint32_t superslab_ref_get(SuperSlab* ss)
{
return ss ? atomic_load_explicit(&ss->refcount, memory_order_acquire) : 0;
}
static inline void superslab_ref_inc(SuperSlab* ss)
{
if (ss) {
atomic_fetch_add_explicit(&ss->refcount, 1, memory_order_acq_rel);
}
}
static inline void superslab_ref_dec(SuperSlab* ss)
{
if (ss) {
uint32_t prev = atomic_fetch_sub_explicit(&ss->refcount, 1, memory_order_acq_rel);
(void)prev; // caller decides when to free; we just provide the primitive
}
}
// Ownership helpers (Box 3)
static inline int ss_owner_try_acquire(TinySlabMeta* m, uint32_t tid)
{
if (!m) return 0;
uint8_t want = (uint8_t)((tid >> 8) & 0xFFu);
uint8_t expected = 0;
return __atomic_compare_exchange_n(&m->owner_tid_low, &expected, want,
false, __ATOMIC_ACQ_REL, __ATOMIC_RELAXED);
}
static inline void ss_owner_release(TinySlabMeta* m, uint32_t tid)
{
if (!m) return;
uint8_t expected = (uint8_t)((tid >> 8) & 0xFFu);
(void)__atomic_compare_exchange_n(&m->owner_tid_low, &expected, 0u,
false, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
}
static inline int ss_owner_is_mine(TinySlabMeta* m, uint32_t tid)
{
if (!m) return 0;
uint8_t cur = __atomic_load_n(&m->owner_tid_low, __ATOMIC_RELAXED);
return cur == (uint8_t)((tid >> 8) & 0xFFu);
}
// Active block accounting (saturating dec by 1)
static inline void ss_active_dec_one(SuperSlab* ss)
{
if (!ss) return;
atomic_fetch_add_explicit(&g_ss_active_dec_calls, 1, memory_order_relaxed);
uint32_t cur = atomic_load_explicit(&ss->total_active_blocks, memory_order_relaxed);
while (cur != 0) {
if (atomic_compare_exchange_weak_explicit(&ss->total_active_blocks,
&cur,
cur - 1u,
memory_order_acq_rel,
memory_order_relaxed)) {
return;
}
// cur updated by failed CAS; loop
}
}
// Remote push helper (Box 2):
// - Enqueue node to per-slab MPSC stack
// - Returns 1 if transition empty->nonempty, otherwise 0
// - Also decrements ss->total_active_blocks once (free completed)
static inline int ss_remote_push(SuperSlab* ss, int slab_idx, void* node)
{
if (!ss || slab_idx < 0 || slab_idx >= SLABS_PER_SUPERSLAB_MAX || !node) {
return -1;
}
_Atomic uintptr_t* head = &ss->remote_heads[slab_idx];
uintptr_t old_head;
uintptr_t new_head;
int transitioned = 0;
do {
old_head = atomic_load_explicit(head, memory_order_acquire);
// next ポインタは tiny_next_ptr_box / tiny_nextptr 等で扱う前提だが、
// ここでは単純に単方向リストとして積む(上位が decode する)。
*(uintptr_t*)node = old_head;
new_head = (uintptr_t)node;
} while (!atomic_compare_exchange_weak_explicit(
head, &old_head, new_head,
memory_order_release, memory_order_relaxed));
transitioned = (old_head == 0) ? 1 : 0;
atomic_fetch_add_explicit(&ss->remote_counts[slab_idx], 1, memory_order_acq_rel);
// account active block removal once per free
ss_active_dec_one(ss);
return transitioned;
}
#endif // SUPERSLAB_INLINE_H