Files
hakmem/core/superslab_cache.c
Moe Charm (CI) cba6f785a1 Add SuperSlab Prefault Box with 4MB MAP_POPULATE bug fix
New Feature: ss_prefault_box.h
- Box for controlling SuperSlab page prefaulting policy
- ENV: HAKMEM_SS_PREFAULT (0=OFF, 1=POPULATE, 2=TOUCH)
- Default: OFF (safe mode until further optimization)

Bug Fix: 4MB MAP_POPULATE regression
- Problem: Fallback path allocated 4MB (2x size for alignment) with MAP_POPULATE
  causing 52x slower mmap (0.585ms → 30.6ms) and 35% throughput regression
- Solution: Remove MAP_POPULATE from 4MB allocation, apply madvise(MADV_WILLNEED)
  only to the aligned 2MB region after trimming prefix/suffix

Changes:
- core/box/ss_prefault_box.h: New prefault policy box (header-only)
- core/box/ss_allocation_box.c: Integrate prefault box, call ss_prefault_region()
- core/superslab_cache.c: Fix fallback path - no MAP_POPULATE on 4MB,
  always munmap prefix/suffix, use MADV_WILLNEED for 2MB only
- docs/specs/ENV_VARS*.md: Document HAKMEM_SS_PREFAULT

Performance:
- bench_random_mixed: 4.32M ops/s (regression fixed, slight improvement)
- bench_tiny_hot: 157M ops/s with prefault=1 (no crash)

Box Theory:
- OS layer (ss_os_acquire): "how to mmap"
- Prefault Box: "when to page-in"
- Allocation Box: "when to call prefault"

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 20:11:24 +09:00

277 lines
9.1 KiB
C

// superslab_cache.c - Cache management for SuperSlab allocator
// Purpose: LRU cache and old cache (prewarm) for SuperSlabs
// License: MIT
// Date: 2025-11-28
#include "hakmem_tiny_superslab_internal.h"
// ============================================================================
// Cache System - Global Variables
// ============================================================================
SuperslabCacheEntry* g_ss_cache_head[8] = {0};
size_t g_ss_cache_count[8] = {0};
size_t g_ss_cache_cap[8] = {0};
size_t g_ss_precharge_target[8] = {0};
_Atomic int g_ss_precharge_done[8] = {0};
int g_ss_cache_enabled = 0;
pthread_once_t g_ss_cache_once = PTHREAD_ONCE_INIT;
pthread_mutex_t g_ss_cache_lock[8];
uint64_t g_ss_cache_hits[8] = {0};
uint64_t g_ss_cache_misses[8] = {0};
uint64_t g_ss_cache_puts[8] = {0};
uint64_t g_ss_cache_drops[8] = {0};
uint64_t g_ss_cache_precharged[8] = {0};
uint64_t g_superslabs_reused = 0;
uint64_t g_superslabs_cached = 0;
// ============================================================================
// Cache Initialization
// ============================================================================
void ss_cache_global_init(void) {
for (int i = 0; i < 8; i++) {
pthread_mutex_init(&g_ss_cache_lock[i], NULL);
}
}
void ss_cache_ensure_init(void) {
pthread_once(&g_ss_cache_once, ss_cache_global_init);
}
// ============================================================================
// OS Acquisition (mmap with alignment)
// ============================================================================
void* ss_os_acquire(uint8_t size_class, size_t ss_size, uintptr_t ss_mask, int populate) {
void* ptr = NULL;
static int log_count = 0;
#ifdef MAP_ALIGNED_SUPER
int map_flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_ALIGNED_SUPER;
#ifdef MAP_POPULATE
if (populate) {
map_flags |= MAP_POPULATE;
}
#endif
ptr = mmap(NULL, ss_size,
PROT_READ | PROT_WRITE,
map_flags,
-1, 0);
if (ptr != MAP_FAILED) {
atomic_fetch_add(&g_ss_mmap_count, 1);
if (((uintptr_t)ptr & ss_mask) == 0) {
ss_stats_os_alloc(size_class, ss_size);
return ptr;
}
munmap(ptr, ss_size);
ptr = NULL;
} else {
log_superslab_oom_once(ss_size, ss_size, errno);
}
#endif
size_t alloc_size = ss_size * 2;
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
void* raw = mmap(NULL, alloc_size,
PROT_READ | PROT_WRITE,
flags,
-1, 0);
if (raw != MAP_FAILED) {
uint64_t count = atomic_fetch_add(&g_ss_mmap_count, 1) + 1;
#if !HAKMEM_BUILD_RELEASE
if (log_count < 10) {
fprintf(stderr, "[SUPERSLAB_MMAP] #%lu: class=%d size=%zu (total SuperSlab mmaps so far)\n",
(unsigned long)count, size_class, ss_size);
log_count++;
}
#endif
}
if (raw == MAP_FAILED) {
log_superslab_oom_once(ss_size, alloc_size, errno);
return NULL;
}
uintptr_t raw_addr = (uintptr_t)raw;
uintptr_t aligned_addr = (raw_addr + ss_mask) & ~ss_mask;
ptr = (void*)aligned_addr;
size_t prefix_size = aligned_addr - raw_addr;
if (prefix_size > 0) {
munmap(raw, prefix_size);
}
size_t suffix_size = alloc_size - prefix_size - ss_size;
if (suffix_size > 0) {
// 余剰領域は常に munmap して、実際に使用する SuperSlab サイズだけを残す。
munmap((char*)ptr + ss_size, suffix_size);
}
// populate が要求されている場合は、実際に使う SuperSlab 領域だけを事前 fault-in する。
if (populate) {
#ifdef MADV_WILLNEED
madvise(ptr, ss_size, MADV_WILLNEED);
#endif
}
ss_stats_os_alloc(size_class, ss_size);
return ptr;
}
// ============================================================================
// Cache Precharge (prewarm)
// ============================================================================
void ss_cache_precharge(uint8_t size_class, size_t ss_size, uintptr_t ss_mask) {
if (!g_ss_cache_enabled) return;
if (size_class >= 8) return;
if (g_ss_precharge_target[size_class] == 0) return;
if (atomic_load_explicit(&g_ss_precharge_done[size_class], memory_order_acquire)) return;
ss_cache_ensure_init();
pthread_mutex_lock(&g_ss_cache_lock[size_class]);
size_t target = g_ss_precharge_target[size_class];
size_t cap = g_ss_cache_cap[size_class];
size_t desired = target;
if (cap != 0 && desired > cap) {
desired = cap;
}
while (g_ss_cache_count[size_class] < desired) {
void* raw = ss_os_acquire(size_class, ss_size, ss_mask, 1);
if (!raw) {
break;
}
SuperslabCacheEntry* entry = (SuperslabCacheEntry*)raw;
entry->next = g_ss_cache_head[size_class];
g_ss_cache_head[size_class] = entry;
g_ss_cache_count[size_class]++;
g_ss_cache_precharged[size_class]++;
}
atomic_store_explicit(&g_ss_precharge_done[size_class], 1, memory_order_release);
pthread_mutex_unlock(&g_ss_cache_lock[size_class]);
}
// ============================================================================
// Cache Pop/Push Operations
// ============================================================================
SuperslabCacheEntry* ss_cache_pop(uint8_t size_class) {
if (!g_ss_cache_enabled) return NULL;
if (size_class >= 8) return NULL;
ss_cache_ensure_init();
pthread_mutex_lock(&g_ss_cache_lock[size_class]);
SuperslabCacheEntry* entry = g_ss_cache_head[size_class];
if (entry) {
g_ss_cache_head[size_class] = entry->next;
if (g_ss_cache_count[size_class] > 0) {
g_ss_cache_count[size_class]--;
}
entry->next = NULL;
g_ss_cache_hits[size_class]++;
} else {
g_ss_cache_misses[size_class]++;
}
pthread_mutex_unlock(&g_ss_cache_lock[size_class]);
return entry;
}
int ss_cache_push(uint8_t size_class, SuperSlab* ss) {
if (!g_ss_cache_enabled) return 0;
if (size_class >= 8) return 0;
ss_cache_ensure_init();
pthread_mutex_lock(&g_ss_cache_lock[size_class]);
size_t cap = g_ss_cache_cap[size_class];
if (cap != 0 && g_ss_cache_count[size_class] >= cap) {
g_ss_cache_drops[size_class]++;
pthread_mutex_unlock(&g_ss_cache_lock[size_class]);
return 0;
}
SuperslabCacheEntry* entry = (SuperslabCacheEntry*)ss;
entry->next = g_ss_cache_head[size_class];
g_ss_cache_head[size_class] = entry;
g_ss_cache_count[size_class]++;
g_ss_cache_puts[size_class]++;
pthread_mutex_unlock(&g_ss_cache_lock[size_class]);
return 1;
}
// ============================================================================
// Precharge Configuration API
// ============================================================================
void tiny_ss_precharge_set_class_target(int class_idx, size_t target) {
if (class_idx < 0 || class_idx >= 8) {
return;
}
ss_cache_ensure_init();
pthread_mutex_lock(&g_ss_cache_lock[class_idx]);
g_ss_precharge_target[class_idx] = target;
if (target > 0) {
g_ss_cache_enabled = 1;
atomic_store_explicit(&g_ss_precharge_done[class_idx], 0, memory_order_relaxed);
}
pthread_mutex_unlock(&g_ss_cache_lock[class_idx]);
}
void tiny_ss_cache_set_class_cap(int class_idx, size_t new_cap) {
if (class_idx < 0 || class_idx >= 8) {
return;
}
ss_cache_ensure_init();
pthread_mutex_lock(&g_ss_cache_lock[class_idx]);
size_t old_cap = g_ss_cache_cap[class_idx];
g_ss_cache_cap[class_idx] = new_cap;
// If shrinking cap, drop extra cached superslabs (oldest from head) and munmap them.
if (new_cap == 0 || new_cap < old_cap) {
while (g_ss_cache_count[class_idx] > new_cap) {
SuperslabCacheEntry* entry = g_ss_cache_head[class_idx];
if (!entry) {
g_ss_cache_count[class_idx] = 0;
break;
}
g_ss_cache_head[class_idx] = entry->next;
g_ss_cache_count[class_idx]--;
g_ss_cache_drops[class_idx]++;
// Convert cache entry back to SuperSlab* and release it to OS.
SuperSlab* ss = (SuperSlab*)entry;
size_t ss_size = (size_t)1 << ss->lg_size;
munmap((void*)ss, ss_size);
// Update global stats to keep accounting consistent.
extern pthread_mutex_t g_superslab_lock; // From ss_stats_box.c
pthread_mutex_lock(&g_superslab_lock);
g_superslabs_freed++;
if (g_bytes_allocated >= ss_size) {
g_bytes_allocated -= ss_size;
} else {
g_bytes_allocated = 0;
}
pthread_mutex_unlock(&g_superslab_lock);
}
}
pthread_mutex_unlock(&g_ss_cache_lock[class_idx]);
// Recompute cache enabled flag (8 classes, so O(8) is cheap)
int enabled = 0;
for (int i = 0; i < 8; i++) {
if (g_ss_cache_cap[i] > 0 || g_ss_precharge_target[i] > 0) {
enabled = 1;
break;
}
}
g_ss_cache_enabled = enabled;
}