**問題:**
- Larson 4T で 100% SEGV (1T は 2.09M ops/s で完走)
- System/mimalloc は 4T で 33.52M ops/s 正常動作
- SS OFF + Remote OFF でも 4T で SEGV
**根本原因: (Task agent ultrathink 調査結果)**
```
CRASH: mov (%r15),%r13
R15 = 0x6261 ← ASCII "ba" (ゴミ値、未初期化TLS)
```
Worker スレッドの TLS 変数が未初期化:
- `__thread void* g_tls_sll_head[TINY_NUM_CLASSES];` ← 初期化なし
- pthread_create() で生成されたスレッドでゼロ初期化されない
- NULL チェックが通過 (0x6261 != NULL) → dereference → SEGV
**修正内容:**
全 TLS 配列に明示的初期化子 `= {0}` を追加:
1. **core/hakmem_tiny.c:**
- `g_tls_sll_head[TINY_NUM_CLASSES] = {0}`
- `g_tls_sll_count[TINY_NUM_CLASSES] = {0}`
- `g_tls_live_ss[TINY_NUM_CLASSES] = {0}`
- `g_tls_bcur[TINY_NUM_CLASSES] = {0}`
- `g_tls_bend[TINY_NUM_CLASSES] = {0}`
2. **core/tiny_fastcache.c:**
- `g_tiny_fast_cache[TINY_FAST_CLASS_COUNT] = {0}`
- `g_tiny_fast_count[TINY_FAST_CLASS_COUNT] = {0}`
- `g_tiny_fast_free_head[TINY_FAST_CLASS_COUNT] = {0}`
- `g_tiny_fast_free_count[TINY_FAST_CLASS_COUNT] = {0}`
3. **core/hakmem_tiny_magazine.c:**
- `g_tls_mags[TINY_NUM_CLASSES] = {0}`
4. **core/tiny_sticky.c:**
- `g_tls_sticky_ss[TINY_NUM_CLASSES][TINY_STICKY_RING] = {0}`
- `g_tls_sticky_idx[TINY_NUM_CLASSES][TINY_STICKY_RING] = {0}`
- `g_tls_sticky_pos[TINY_NUM_CLASSES] = {0}`
**効果:**
```
Before: 1T: 2.09M ✅ | 4T: SEGV 💀
After: 1T: 2.41M ✅ | 4T: 4.19M ✅ (+15% 1T, SEGV解消)
```
**テスト:**
```bash
# 1 thread: 完走
./larson_hakmem 2 8 128 1024 1 12345 1
→ Throughput = 2,407,597 ops/s ✅
# 4 threads: 完走(以前は SEGV)
./larson_hakmem 2 8 128 1024 1 12345 4
→ Throughput = 4,192,155 ops/s ✅
```
**調査協力:** Task agent (ultrathink mode) による完璧な根本原因特定
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
1455 lines
59 KiB
Plaintext
1455 lines
59 KiB
Plaintext
// ============================================================================
|
||
// hakmem_pool.c - L2 Hybrid Pool Implementation (Mid-Size: 2-32KiB)
|
||
// ============================================================================
|
||
//
|
||
// サイズクラス定義:
|
||
// ┌──────────┬─────────┬──────────────┬─────────────┐
|
||
// │ クラス │ サイズ │ 初期CAP │ ページ構成 │
|
||
// ├──────────┼─────────┼──────────────┼─────────────┤
|
||
// │ Class 0 │ 2 KiB │ 64 pages │ 32 blocks/p │
|
||
// │ Class 1 │ 4 KiB │ 64 pages │ 16 blocks/p │
|
||
// │ Class 2 │ 8 KiB │ 64 pages │ 8 blocks/p │
|
||
// │ Class 3 │ 16 KiB │ 32 pages │ 4 blocks/p │
|
||
// │ Class 4 │ 32 KiB │ 16 pages │ 2 blocks/p │
|
||
// │ DYN1 │ 6 KiB* │ 0 (無効) │ 可変 │
|
||
// │ DYN2 │ (未使用)│ 0 (無効) │ 可変 │
|
||
// └──────────┴─────────┴──────────────┴─────────────┘
|
||
// * DYN1はギャップ(8-16KB)を埋めるための動的クラス
|
||
//
|
||
// W_MAX (切り上げ許容倍率):
|
||
// - 意味: 要求サイズの何倍までのクラスを許容するか
|
||
// - デフォルト: 1.40 (40%までの切り上げを許容)
|
||
// - 例: 3KiBの要求 → 4KiBクラス使用OK (1.33倍 < 1.40)
|
||
// - 環境変数: HAKMEM_WMAX_MID=1.6 で変更可能
|
||
//
|
||
// CAP (在庫量):
|
||
// - 意味: 各クラスで保持する最大ページ数
|
||
// - 初期値: {64,64,64,32,16} - 保守的(フットプリント優先)
|
||
// - 推奨値: {256,256,256,128,64} - パフォーマンス優先
|
||
// - 環境変数: HAKMEM_CAP_MID=256,256,256,128,64 で設定
|
||
// - 学習モード: HAKMEM_LEARN=1 で自動調整
|
||
//
|
||
// TLSリング構造:
|
||
// - POOL_L2_RING_CAP: リングバッファ容量(デフォルト16)
|
||
// - ActivePage A/B: bump-run方式(ロックフリー)
|
||
// - LIFO overflow: リングから溢れた分
|
||
//
|
||
// パフォーマンスチューニング:
|
||
// 1. 初期CAP 4倍化: HAKMEM_CAP_MID=256,256,256,128,64
|
||
// 2. W_MAX緩和: HAKMEM_WMAX_MID=1.6
|
||
// 3. DYN1有効化: HAKMEM_MID_DYN1=6144 HAKMEM_CAP_MID_DYN1=64
|
||
// 4. 学習モード: HAKMEM_LEARN=1
|
||
//
|
||
// License: MIT
|
||
// Last Updated: 2025-10-26 (Code Cleanup完了)
|
||
|
||
#include "hakmem_pool.h"
|
||
#include "hakmem_config.h"
|
||
#include "hakmem_internal.h" // For AllocHeader and HAKMEM_MAGIC
|
||
#include "hakmem_syscall.h" // Box 3 syscall layer (bypasses LD_PRELOAD)
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <stdio.h>
|
||
#include <stdbool.h>
|
||
#include <sys/mman.h>
|
||
#include <pthread.h>
|
||
#include <stdatomic.h>
|
||
#include "hakmem_prof.h"
|
||
#include "hakmem_policy.h" // FrozenPolicy caps (Soft CAP gating)
|
||
#include "hakmem_debug.h"
|
||
|
||
// False sharing mitigation: padded mutex type (64B)
|
||
typedef struct { pthread_mutex_t m; char _pad[64 - (sizeof(pthread_mutex_t) % 64)]; } PaddedMutex;
|
||
|
||
// ===========================================================================
|
||
// Internal Data Structures
|
||
// ===========================================================================
|
||
#include "box/pool_tls_types.inc.h"
|
||
|
||
// Mid page descriptor registry (64KiB pages → {class_idx, owner_tid})
|
||
#include "box/pool_mid_desc.inc.h"
|
||
|
||
// ---------------- Transfer Cache (per-thread per-class inbox) --------------
|
||
#include "box/pool_mid_tc.inc.h"
|
||
|
||
// ===========================================================================
|
||
// MF2 Per-Page Sharding: Mimalloc-Inspired Architecture
|
||
// ===========================================================================
|
||
//
|
||
// Key idea: Each 64KB page has independent freelist (no sharing!)
|
||
// - O(1) page lookup from block address: (addr & ~0xFFFF)
|
||
// - Owner thread: fast path (no locks, no atomics)
|
||
// - Cross-thread free: lock-free remote stack
|
||
// - Expected: +50% (13.78 → 20.7 M/s, 60-75% of mimalloc)
|
||
|
||
// MF2 Configuration Constants (Quick Win #5)
|
||
#define MF2_PENDING_QUEUE_BUDGET 4 // Max pages to drain from pending queue
|
||
#define MF2_DEBUG_SAMPLE_COUNT 20 // Number of debug samples to log
|
||
#define MF2_TSC_CYCLES_PER_US 3000 // Estimated TSC cycles per microsecond
|
||
#define MF2_PAGE_SIZE_SHIFT 16 // log2(64KB) for fast division
|
||
#define MF2_PAGE_ALIGNMENT 65536 // 64KB alignment for mmap
|
||
|
||
// Debug Logging Macros (Quick Win #6)
|
||
// Conditional compilation for debug logs - set HAKMEM_DEBUG_MF2=1 to enable
|
||
#ifdef HAKMEM_DEBUG_MF2
|
||
#define MF2_DEBUG_LOG(fmt, ...) fprintf(stderr, "[MF2] " fmt "\n", ##__VA_ARGS__)
|
||
#define MF2_ERROR_LOG(fmt, ...) fprintf(stderr, "[MF2 ERROR] " fmt "\n", ##__VA_ARGS__)
|
||
#else
|
||
#define MF2_DEBUG_LOG(fmt, ...) ((void)0)
|
||
#define MF2_ERROR_LOG(fmt, ...) fprintf(stderr, "[MF2 ERROR] " fmt "\n", ##__VA_ARGS__)
|
||
#endif
|
||
|
||
// Forward declarations
|
||
static size_t g_class_sizes[POOL_NUM_CLASSES];
|
||
|
||
// MF2 Page descriptor: per-page metadata (one per 64KB page)
|
||
typedef struct MidPage {
|
||
// Page identity
|
||
void* base; // Page base address (64KB aligned)
|
||
uint8_t class_idx; // Size class index (0-6)
|
||
uint8_t flags; // Page flags (reserved for future use)
|
||
uint16_t _pad0;
|
||
|
||
// Ownership
|
||
pthread_t owner_tid; // Owner thread ID (for fast-path check)
|
||
struct MF2_ThreadPages* owner_tp; // Owner thread's heap (for pending queue access)
|
||
uint64_t last_transfer_time; // rdtsc() timestamp of last ownership transfer (lease mechanism)
|
||
|
||
// Page-local freelist (owner-only, NO LOCK!)
|
||
PoolBlock* freelist; // Local freelist head
|
||
uint16_t free_count; // Number of free blocks
|
||
uint16_t capacity; // Total blocks per page
|
||
|
||
// Remote frees (cross-thread, lock-free MPSC stack)
|
||
atomic_uintptr_t remote_head; // Lock-free remote free stack
|
||
atomic_uint remote_count; // Remote free count (for quick check)
|
||
|
||
// Lifecycle
|
||
atomic_int in_use; // Live allocations on this page
|
||
atomic_int pending_dn; // DONTNEED enqueued flag
|
||
|
||
// Linkage (thread-local page lists)
|
||
struct MidPage* next_page; // Next page in thread's list
|
||
struct MidPage* prev_page; // Previous page in thread's list
|
||
|
||
// Pending queue (remote drain notification)
|
||
_Atomic(_Bool) in_remote_pending; // Is this page in pending queue?
|
||
struct MidPage* next_pending; // Next page in pending queue
|
||
|
||
// Padding to cache line boundary (avoid false sharing)
|
||
char _pad[64 - ((sizeof(void*) * 5 + sizeof(PoolBlock*) + sizeof(uint16_t) * 2 +
|
||
sizeof(atomic_uintptr_t) + sizeof(atomic_uint) +
|
||
sizeof(atomic_int) * 2 + sizeof(pthread_t) +
|
||
sizeof(_Atomic(_Bool)) + 4) % 64)];
|
||
} MidPage;
|
||
|
||
// Page registry: O(1) lookup from block address
|
||
// Use direct indexing: (addr >> 16) & MASK
|
||
#define MF2_PAGE_REGISTRY_BITS 16 // 64K entries (4GB address space with 64KB pages)
|
||
#define MF2_PAGE_REGISTRY_SIZE (1 << MF2_PAGE_REGISTRY_BITS)
|
||
#define MF2_PAGE_REGISTRY_MASK (MF2_PAGE_REGISTRY_SIZE - 1)
|
||
|
||
typedef struct {
|
||
// Direct-mapped page table (no hash collisions!)
|
||
MidPage* pages[MF2_PAGE_REGISTRY_SIZE];
|
||
|
||
// Coarse-grained locks for rare updates (page alloc/free)
|
||
// 256 locks = 256-way parallelism for page registration
|
||
pthread_mutex_t locks[256];
|
||
|
||
// Statistics
|
||
atomic_uint_fast64_t total_pages; // Total pages allocated
|
||
atomic_uint_fast64_t active_pages; // Pages with live allocations
|
||
} MF2_PageRegistry;
|
||
|
||
// Thread-local page lists (one list per size class)
|
||
typedef struct MF2_ThreadPages {
|
||
// Active pages (have free blocks)
|
||
MidPage* active_page[POOL_NUM_CLASSES];
|
||
|
||
// Partial pages (drained pages with free blocks, LIFO for cache locality)
|
||
// Checked before allocating new pages (fast reuse path)
|
||
MidPage* partial_pages[POOL_NUM_CLASSES];
|
||
|
||
// Full pages (no free blocks, but may receive remote frees)
|
||
// TODO: Gradually deprecate in favor of partial_pages
|
||
MidPage* full_pages[POOL_NUM_CLASSES];
|
||
|
||
// Pending queue (pages with remote frees, MPSC lock-free stack)
|
||
atomic_uintptr_t pages_remote_pending[POOL_NUM_CLASSES];
|
||
|
||
// Pending claim flags (prevent multi-consumer CAS thrashing)
|
||
// One adopter at a time per queue (test_and_set to claim, clear to release)
|
||
atomic_flag pending_claim[POOL_NUM_CLASSES];
|
||
|
||
// Page ownership count (for statistics)
|
||
uint32_t page_count[POOL_NUM_CLASSES];
|
||
|
||
// Thread identity (cached for fast comparison)
|
||
pthread_t my_tid;
|
||
|
||
// Route P: Activity tracking for idle-based adoption
|
||
// Updated on every allocation (mf2_alloc_fast)
|
||
// Read by adopters to check if owner is idle
|
||
atomic_uint_fast64_t last_alloc_tsc;
|
||
} MF2_ThreadPages;
|
||
|
||
// Global page registry (shared, rarely accessed)
|
||
static MF2_PageRegistry g_mf2_page_registry;
|
||
|
||
// Thread-local page lists (hot path, no sharing!)
|
||
static __thread MF2_ThreadPages* t_mf2_pages = NULL;
|
||
|
||
// ===========================================================================
|
||
// MF2 Global State (Quick Win #3b - Structured Globals)
|
||
// ===========================================================================
|
||
// Individual globals replaced with structured state below.
|
||
// Old declarations removed, replaced with macro-mapped struct instances.
|
||
//
|
||
// Benefits:
|
||
// - Logical grouping (config, registry, stats)
|
||
// - Better documentation
|
||
// - Easier to extend or refactor
|
||
// - Single source of truth for each category
|
||
|
||
#define MF2_MAX_THREADS 256
|
||
|
||
// MF2 Configuration (environment variables)
|
||
typedef struct {
|
||
int enabled; // HAKMEM_MF2_ENABLE (0=disabled, 1=enabled)
|
||
int max_queues; // HAKMEM_MF2_MAX_QUEUES (default: 2)
|
||
int lease_ms; // HAKMEM_MF2_LEASE_MS (default: 10ms, 0=disabled)
|
||
int idle_threshold_us; // HAKMEM_MF2_IDLE_THRESHOLD_US (default: 150µs)
|
||
} MF2_Config;
|
||
|
||
// MF2 Thread Registry (cross-thread coordination)
|
||
typedef struct {
|
||
MF2_ThreadPages* all_thread_pages[MF2_MAX_THREADS]; // Global registry
|
||
_Atomic int num_thread_pages; // Active thread count
|
||
_Atomic int adoptable_count[POOL_NUM_CLASSES]; // Non-empty pending queues
|
||
pthread_key_t tls_key; // Thread-local storage key
|
||
pthread_once_t key_once; // TLS initialization guard
|
||
} MF2_Registry;
|
||
|
||
// MF2 Statistics (debug instrumentation)
|
||
typedef struct {
|
||
// Allocation path
|
||
atomic_uint_fast64_t alloc_fast_hit;
|
||
atomic_uint_fast64_t alloc_slow_hit;
|
||
atomic_uint_fast64_t page_reuse_count;
|
||
atomic_uint_fast64_t new_page_count;
|
||
|
||
// Free path
|
||
atomic_uint_fast64_t free_owner_count;
|
||
atomic_uint_fast64_t free_remote_count;
|
||
|
||
// Drain operations
|
||
atomic_uint_fast64_t drain_count;
|
||
atomic_uint_fast64_t drain_blocks;
|
||
atomic_uint_fast64_t drain_attempts;
|
||
atomic_uint_fast64_t drain_success;
|
||
atomic_uint_fast64_t slow_checked_drain;
|
||
atomic_uint_fast64_t slow_found_remote;
|
||
|
||
// Full page scan (obsolete, kept for historical tracking)
|
||
atomic_uint_fast64_t full_scan_checked;
|
||
atomic_uint_fast64_t full_scan_found_remote;
|
||
atomic_uint_fast64_t eager_drain_scanned;
|
||
atomic_uint_fast64_t eager_drain_found;
|
||
|
||
// Pending queue
|
||
atomic_uint_fast64_t pending_enqueued;
|
||
atomic_uint_fast64_t pending_drained;
|
||
atomic_uint_fast64_t pending_requeued;
|
||
} MF2_Stats;
|
||
|
||
// Instantiate structured global state (Quick Win #3b)
|
||
static MF2_Config g_mf2_config = {
|
||
.enabled = 0, // Will be set by env var
|
||
.max_queues = 2,
|
||
.lease_ms = 10,
|
||
.idle_threshold_us = 150
|
||
};
|
||
|
||
static MF2_Registry g_mf2_registry = {
|
||
.all_thread_pages = {0},
|
||
.num_thread_pages = 0,
|
||
.adoptable_count = {0},
|
||
.tls_key = 0,
|
||
.key_once = PTHREAD_ONCE_INIT
|
||
};
|
||
|
||
static MF2_Stats g_mf2_stats = {
|
||
// All fields initialized to 0 (atomic zero-initialization is valid)
|
||
.alloc_fast_hit = 0,
|
||
.alloc_slow_hit = 0,
|
||
.page_reuse_count = 0,
|
||
.new_page_count = 0,
|
||
.free_owner_count = 0,
|
||
.free_remote_count = 0,
|
||
.drain_count = 0,
|
||
.drain_blocks = 0,
|
||
.drain_attempts = 0,
|
||
.drain_success = 0,
|
||
.slow_checked_drain = 0,
|
||
.slow_found_remote = 0,
|
||
.full_scan_checked = 0,
|
||
.full_scan_found_remote = 0,
|
||
.eager_drain_scanned = 0,
|
||
.eager_drain_found = 0,
|
||
.pending_enqueued = 0,
|
||
.pending_drained = 0,
|
||
.pending_requeued = 0
|
||
};
|
||
|
||
// Compatibility macros: Map old global names to struct fields
|
||
// This allows existing code to work unchanged while using structured state
|
||
#define g_mf2_enabled (g_mf2_config.enabled)
|
||
#define g_mf2_max_queues (g_mf2_config.max_queues)
|
||
#define g_mf2_lease_ms (g_mf2_config.lease_ms)
|
||
#define g_mf2_idle_threshold_us (g_mf2_config.idle_threshold_us)
|
||
|
||
#define g_all_thread_pages (g_mf2_registry.all_thread_pages)
|
||
#define g_num_thread_pages (g_mf2_registry.num_thread_pages)
|
||
#define g_adoptable_count (g_mf2_registry.adoptable_count)
|
||
#define g_mf2_tls_key (g_mf2_registry.tls_key)
|
||
#define g_mf2_key_once (g_mf2_registry.key_once)
|
||
|
||
#define g_mf2_alloc_fast_hit (g_mf2_stats.alloc_fast_hit)
|
||
#define g_mf2_alloc_slow_hit (g_mf2_stats.alloc_slow_hit)
|
||
#define g_mf2_page_reuse_count (g_mf2_stats.page_reuse_count)
|
||
#define g_mf2_new_page_count (g_mf2_stats.new_page_count)
|
||
#define g_mf2_free_owner_count (g_mf2_stats.free_owner_count)
|
||
#define g_mf2_free_remote_count (g_mf2_stats.free_remote_count)
|
||
#define g_mf2_drain_count (g_mf2_stats.drain_count)
|
||
#define g_mf2_drain_blocks (g_mf2_stats.drain_blocks)
|
||
#define g_mf2_drain_attempts (g_mf2_stats.drain_attempts)
|
||
#define g_mf2_drain_success (g_mf2_stats.drain_success)
|
||
#define g_mf2_slow_checked_drain (g_mf2_stats.slow_checked_drain)
|
||
#define g_mf2_slow_found_remote (g_mf2_stats.slow_found_remote)
|
||
#define g_mf2_full_scan_checked (g_mf2_stats.full_scan_checked)
|
||
#define g_mf2_full_scan_found_remote (g_mf2_stats.full_scan_found_remote)
|
||
#define g_mf2_eager_drain_scanned (g_mf2_stats.eager_drain_scanned)
|
||
#define g_mf2_eager_drain_found (g_mf2_stats.eager_drain_found)
|
||
#define g_mf2_pending_enqueued (g_mf2_stats.pending_enqueued)
|
||
#define g_mf2_pending_drained (g_mf2_stats.pending_drained)
|
||
#define g_mf2_pending_requeued (g_mf2_stats.pending_requeued)
|
||
|
||
// ===========================================================================
|
||
// End of MF2 Data Structures
|
||
// ===========================================================================
|
||
|
||
// --- MF2 Initialization Functions ---
|
||
|
||
// Thread-safe initialization using pthread_once
|
||
static pthread_once_t mf2_page_registry_init_control = PTHREAD_ONCE_INIT;
|
||
static void mf2_page_registry_init_impl(void) {
|
||
// Initialize all page slots to NULL
|
||
memset(&g_mf2_page_registry, 0, sizeof(g_mf2_page_registry));
|
||
|
||
// Initialize 256 coarse-grained locks for registry updates
|
||
for (int i = 0; i < 256; i++) {
|
||
pthread_mutex_init(&g_mf2_page_registry.locks[i], NULL);
|
||
}
|
||
|
||
// Initialize counters
|
||
atomic_store(&g_mf2_page_registry.total_pages, 0);
|
||
atomic_store(&g_mf2_page_registry.active_pages, 0);
|
||
}
|
||
static void mf2_page_registry_init(void) {
|
||
pthread_once(&mf2_page_registry_init_control, mf2_page_registry_init_impl);
|
||
}
|
||
|
||
// Strategy A: ThreadPages destructor (cleanup on thread exit)
|
||
static void mf2_thread_pages_destructor(void* arg) {
|
||
MF2_ThreadPages* tp = (MF2_ThreadPages*)arg;
|
||
if (!tp) return;
|
||
|
||
// SAFETY: Don't remove from global registry or free memory
|
||
// Reason: Causes "malloc(): unsorted double linked list corrupted" crashes
|
||
// Tradeoff: Small memory leak (one ThreadPages struct per thread lifetime)
|
||
// TODO: Investigate safe cleanup mechanism
|
||
|
||
// Remove from global registry (DISABLED for safety)
|
||
// for (int i = 0; i < atomic_load_explicit(&g_num_thread_pages, memory_order_acquire); i++) {
|
||
// if (atomic_load_explicit((atomic_uintptr_t*)&g_all_thread_pages[i], memory_order_acquire) == (uintptr_t)tp) {
|
||
// atomic_store_explicit((atomic_uintptr_t*)&g_all_thread_pages[i], 0, memory_order_release);
|
||
// break;
|
||
// }
|
||
// }
|
||
|
||
// Free all pages owned by this thread (DISABLED for safety)
|
||
// hkm_libc_free(tp);
|
||
|
||
(void)tp; // Suppress unused warning
|
||
}
|
||
|
||
// Strategy A: Initialize pthread_key (once only)
|
||
static void mf2_init_tls_key(void) {
|
||
pthread_key_create(&g_mf2_tls_key, mf2_thread_pages_destructor);
|
||
}
|
||
|
||
// Helper: rdtsc() - Read CPU timestamp counter (for Route P idle detection)
|
||
static inline uint64_t mf2_rdtsc(void) {
|
||
#if defined(__x86_64__) || defined(__i386__)
|
||
uint32_t lo, hi;
|
||
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
|
||
return ((uint64_t)hi << 32) | lo;
|
||
#else
|
||
// Fallback for non-x86 architectures (use clock_gettime approximation)
|
||
struct timespec ts;
|
||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||
return (uint64_t)ts.tv_sec * 1000000000ULL + (uint64_t)ts.tv_nsec;
|
||
#endif
|
||
}
|
||
|
||
static MF2_ThreadPages* mf2_thread_pages_get(void) {
|
||
if (t_mf2_pages) return t_mf2_pages;
|
||
|
||
// Initialize pthread_key (once only)
|
||
pthread_once(&g_mf2_key_once, mf2_init_tls_key);
|
||
|
||
// Allocate thread-local page lists
|
||
MF2_ThreadPages* tp = (MF2_ThreadPages*)hkm_libc_calloc(1, sizeof(MF2_ThreadPages));
|
||
if (!tp) return NULL;
|
||
|
||
// Initialize with current thread ID
|
||
tp->my_tid = pthread_self();
|
||
|
||
// All page lists start empty (NULL)
|
||
for (int c = 0; c < POOL_NUM_CLASSES; c++) {
|
||
tp->active_page[c] = NULL;
|
||
tp->full_pages[c] = NULL;
|
||
atomic_store_explicit(&tp->pages_remote_pending[c], 0, memory_order_relaxed);
|
||
atomic_flag_clear_explicit(&tp->pending_claim[c], memory_order_relaxed);
|
||
tp->page_count[c] = 0;
|
||
}
|
||
|
||
// Route P: Initialize activity tracking
|
||
atomic_store_explicit(&tp->last_alloc_tsc, mf2_rdtsc(), memory_order_relaxed);
|
||
|
||
// Strategy A: Register in global array for round-robin drain
|
||
int idx = atomic_fetch_add_explicit(&g_num_thread_pages, 1, memory_order_acq_rel);
|
||
if (idx < MF2_MAX_THREADS) {
|
||
atomic_store_explicit((atomic_uintptr_t*)&g_all_thread_pages[idx], (uintptr_t)tp, memory_order_release);
|
||
|
||
// DEBUG: Log first 10 thread registrations - Disabled for performance
|
||
// static _Atomic int reg_samples = 0;
|
||
// int rs = atomic_fetch_add_explicit(®_samples, 1, memory_order_relaxed);
|
||
// if (rs < 10) {
|
||
// fprintf(stderr, "[TLS_REGISTER %d] tid=%lu, tp=%p, idx=%d\n",
|
||
// rs, (unsigned long)tp->my_tid, tp, idx);
|
||
// }
|
||
} else {
|
||
MF2_ERROR_LOG("Too many threads! MAX=%d", MF2_MAX_THREADS);
|
||
}
|
||
|
||
// Set pthread-specific data for destructor
|
||
pthread_setspecific(g_mf2_tls_key, tp);
|
||
|
||
t_mf2_pages = tp;
|
||
return tp;
|
||
}
|
||
|
||
// --- MF2 Page Allocation & Lookup ---
|
||
|
||
// O(1) page lookup from block address (mimalloc's secret sauce!)
|
||
static inline MidPage* mf2_addr_to_page(void* addr) {
|
||
// Step 1: Get page base address (64KB aligned)
|
||
// 0xFFFF = 65535, ~0xFFFF clears bottom 16 bits
|
||
void* page_base = (void*)((uintptr_t)addr & ~0xFFFFULL);
|
||
|
||
// Step 2: Index into registry (direct-mapped, 64K entries)
|
||
// (addr >> 16) extracts page index, & 0xFFFF wraps to registry size
|
||
size_t idx = ((uintptr_t)page_base >> 16) & (MF2_PAGE_REGISTRY_SIZE - 1);
|
||
|
||
// Step 3: Direct lookup (no hash collision handling needed with 64K entries)
|
||
MidPage* page = g_mf2_page_registry.pages[idx];
|
||
|
||
// ALIGNMENT VERIFICATION (Step 3) - Sample first 100 lookups
|
||
static _Atomic int lookup_count = 0;
|
||
// DEBUG: Disabled for performance
|
||
// int count = atomic_fetch_add_explicit(&lookup_count, 1, memory_order_relaxed);
|
||
// if (count < 100) {
|
||
// int found = (page != NULL);
|
||
// int match = (page && page->base == page_base);
|
||
// fprintf(stderr, "[LOOKUP %d] addr=%p → page_base=%p → idx=%zu → found=%s",
|
||
// count, addr, page_base, idx, found ? "YES" : "NO");
|
||
// if (page) {
|
||
// fprintf(stderr, ", page->base=%p, match=%s",
|
||
// page->base, match ? "YES" : "NO");
|
||
// }
|
||
// fprintf(stderr, "\n");
|
||
// }
|
||
|
||
// Validation: Ensure page base matches (handles potential collisions)
|
||
if (page && page->base == page_base) {
|
||
return page;
|
||
}
|
||
|
||
// Collision or not registered (shouldn't happen in normal operation)
|
||
return NULL;
|
||
}
|
||
|
||
// Register a page in the global registry (called once per page allocation)
|
||
static void mf2_register_page(MidPage* page) {
|
||
if (!page) return;
|
||
|
||
// Calculate registry index from page base
|
||
size_t idx = ((uintptr_t)page->base >> 16) & (MF2_PAGE_REGISTRY_SIZE - 1);
|
||
|
||
// ALIGNMENT VERIFICATION (Step 2) - DEBUG: Disabled for performance
|
||
// static int register_count = 0;
|
||
// if (register_count < 10) {
|
||
// fprintf(stderr, "[REGISTER %d] Page %p → idx %zu (aligned=%s)\n",
|
||
// register_count, page->base, idx,
|
||
// (((uintptr_t)page->base & 0xFFFF) == 0) ? "YES" : "NO");
|
||
// register_count++;
|
||
// }
|
||
|
||
// Coarse-grained lock (256 locks for 64K entries = 256 entries/lock)
|
||
int lock_idx = idx % 256;
|
||
pthread_mutex_lock(&g_mf2_page_registry.locks[lock_idx]);
|
||
|
||
// Check for collision (should be rare with 64K entries)
|
||
if (g_mf2_page_registry.pages[idx] != NULL) {
|
||
// Collision detected - this is a problem!
|
||
// For MVP, we'll just log and overwrite (TODO: handle collisions properly)
|
||
HAKMEM_LOG("[MF2] WARNING: Page registry collision at index %zu\n", idx);
|
||
}
|
||
|
||
// Register the page
|
||
g_mf2_page_registry.pages[idx] = page;
|
||
|
||
// Update counters
|
||
atomic_fetch_add_explicit(&g_mf2_page_registry.total_pages, 1, memory_order_relaxed);
|
||
atomic_fetch_add_explicit(&g_mf2_page_registry.active_pages, 1, memory_order_relaxed);
|
||
|
||
pthread_mutex_unlock(&g_mf2_page_registry.locks[lock_idx]);
|
||
}
|
||
|
||
// Unregister a page from the global registry (called when returning page to OS)
|
||
__attribute__((unused)) static void mf2_unregister_page(MidPage* page) {
|
||
if (!page) return;
|
||
|
||
size_t idx = ((uintptr_t)page->base >> 16) & (MF2_PAGE_REGISTRY_SIZE - 1);
|
||
int lock_idx = idx % 256;
|
||
|
||
pthread_mutex_lock(&g_mf2_page_registry.locks[lock_idx]);
|
||
|
||
if (g_mf2_page_registry.pages[idx] == page) {
|
||
g_mf2_page_registry.pages[idx] = NULL;
|
||
atomic_fetch_sub_explicit(&g_mf2_page_registry.active_pages, 1, memory_order_relaxed);
|
||
}
|
||
|
||
pthread_mutex_unlock(&g_mf2_page_registry.locks[lock_idx]);
|
||
}
|
||
|
||
// Allocate and initialize a new 64KB page for given size class
|
||
static MidPage* mf2_alloc_new_page(int class_idx) {
|
||
if (class_idx < 0 || class_idx >= POOL_NUM_CLASSES) return NULL;
|
||
|
||
// Get user size class (2KB, 4KB, 8KB, 16KB, 32KB)
|
||
size_t user_size = g_class_sizes[class_idx];
|
||
if (user_size == 0) return NULL; // Dynamic class disabled
|
||
|
||
// CRITICAL FIX: Each block needs HEADER_SIZE + user_size
|
||
// The header stores metadata (AllocHeader), user_size is the usable space
|
||
size_t block_size = HEADER_SIZE + user_size;
|
||
|
||
// Step 1: Allocate 64KB page (aligned to 64KB boundary)
|
||
// CRITICAL FIX #4: Must ensure 64KB alignment!
|
||
// mmap() only guarantees 4KB alignment, breaking addr_to_page() lookup.
|
||
// This caused 97% of frees to fail silently (fatal bug!)
|
||
//
|
||
// CRITICAL FIX: Use mmap() + alignment adjustment to avoid recursion!
|
||
// Using wrapped posix_memalign with WRAP_L2=1 causes infinite recursion.
|
||
|
||
// Allocate 2x size to allow alignment adjustment
|
||
size_t alloc_size = POOL_PAGE_SIZE * 2; // 128KB
|
||
void* raw = mmap(NULL, alloc_size, PROT_READ | PROT_WRITE,
|
||
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
||
if (raw == MAP_FAILED) {
|
||
return NULL; // OOM
|
||
}
|
||
|
||
// Find 64KB aligned address within allocation
|
||
uintptr_t addr = (uintptr_t)raw;
|
||
uintptr_t aligned = (addr + 0xFFFF) & ~0xFFFFULL; // Round up to 64KB boundary
|
||
void* page_base = (void*)aligned;
|
||
|
||
// Free unused prefix (if any)
|
||
size_t prefix_size = aligned - addr;
|
||
if (prefix_size > 0) {
|
||
munmap(raw, prefix_size);
|
||
}
|
||
|
||
// Free unused suffix
|
||
size_t suffix_offset = prefix_size + POOL_PAGE_SIZE;
|
||
if (suffix_offset < alloc_size) {
|
||
munmap((char*)raw + suffix_offset, alloc_size - suffix_offset);
|
||
}
|
||
|
||
// DEBUG: Log first few allocations
|
||
static _Atomic int mmap_count = 0;
|
||
int mc = atomic_fetch_add_explicit(&mmap_count, 1, memory_order_relaxed);
|
||
if (mc < 5) {
|
||
MF2_DEBUG_LOG("MMAP_ALLOC %d: raw=%p, aligned=%p, prefix=%zu, suffix=%zu",
|
||
mc, raw, page_base, prefix_size, alloc_size - suffix_offset);
|
||
}
|
||
|
||
// ALIGNMENT VERIFICATION (Step 1)
|
||
if (((uintptr_t)page_base & 0xFFFF) != 0) {
|
||
MF2_ERROR_LOG("ALIGNMENT BUG: Page %p not 64KB aligned! (offset=%zu)",
|
||
page_base, ((uintptr_t)page_base & 0xFFFF));
|
||
}
|
||
|
||
// Zero-fill (required for posix_memalign)
|
||
// Note: This adds ~15μs overhead, but is necessary for correctness
|
||
memset(page_base, 0, POOL_PAGE_SIZE);
|
||
|
||
// Step 2: Allocate MidPage descriptor
|
||
MidPage* page = (MidPage*)hkm_libc_calloc(1, sizeof(MidPage));
|
||
if (!page) {
|
||
// CRITICAL FIX: Use munmap for mmap-allocated memory
|
||
munmap(page_base, POOL_PAGE_SIZE);
|
||
return NULL;
|
||
}
|
||
|
||
// Step 3: Initialize page descriptor
|
||
page->base = page_base;
|
||
page->class_idx = (uint8_t)class_idx;
|
||
page->flags = 0;
|
||
page->owner_tid = pthread_self();
|
||
page->owner_tp = mf2_thread_pages_get(); // Store owner's ThreadPages for pending queue
|
||
page->last_transfer_time = 0; // No transfer yet (lease mechanism)
|
||
|
||
// Step 4: Build freelist chain (walk through page and link blocks)
|
||
// Calculate how many blocks fit in 64KB page (including header overhead)
|
||
size_t usable_size = POOL_PAGE_SIZE;
|
||
size_t num_blocks = usable_size / block_size;
|
||
|
||
page->capacity = (uint16_t)num_blocks;
|
||
page->free_count = (uint16_t)num_blocks;
|
||
|
||
// Build linked list of free blocks
|
||
PoolBlock* freelist_head = NULL;
|
||
PoolBlock* freelist_tail = NULL;
|
||
|
||
for (size_t i = 0; i < num_blocks; i++) {
|
||
char* block_addr = (char*)page_base + (i * block_size);
|
||
PoolBlock* block = (PoolBlock*)block_addr;
|
||
|
||
block->next = NULL;
|
||
|
||
if (freelist_head == NULL) {
|
||
freelist_head = block;
|
||
freelist_tail = block;
|
||
} else {
|
||
freelist_tail->next = block;
|
||
freelist_tail = block;
|
||
}
|
||
}
|
||
|
||
page->freelist = freelist_head;
|
||
|
||
// Step 5: Initialize remote stack (for cross-thread frees)
|
||
atomic_store(&page->remote_head, (uintptr_t)0);
|
||
atomic_store(&page->remote_count, 0);
|
||
|
||
// Step 6: Initialize lifecycle counters
|
||
atomic_store(&page->in_use, 0); // No blocks allocated yet
|
||
atomic_store(&page->pending_dn, 0);
|
||
|
||
// Step 7: Initialize linkage
|
||
page->next_page = NULL;
|
||
page->prev_page = NULL;
|
||
|
||
// Initialize pending queue fields
|
||
atomic_store_explicit(&page->in_remote_pending, false, memory_order_relaxed);
|
||
page->next_pending = NULL;
|
||
|
||
// Step 8: Register page in global registry
|
||
mf2_register_page(page);
|
||
|
||
return page;
|
||
}
|
||
|
||
// --- MF2 Allocation & Free Operations ---
|
||
|
||
// Forward declarations
|
||
static void mf2_enqueue_pending(MF2_ThreadPages* owner_tp, MidPage* page);
|
||
|
||
// Drain remote frees (cross-thread) into page's local freelist
|
||
// Called by owner thread when local freelist is empty
|
||
static int mf2_drain_remote_frees(MidPage* page) {
|
||
if (!page) return 0;
|
||
|
||
atomic_fetch_add(&g_mf2_drain_attempts, 1);
|
||
|
||
// Check if there are any remote frees (FIX #6: use seq_cst to ensure total ordering - DEBUG)
|
||
unsigned int remote_count = atomic_load_explicit(&page->remote_count, memory_order_seq_cst);
|
||
if (remote_count == 0) {
|
||
return 0; // Nothing to drain
|
||
}
|
||
|
||
// Atomically swap remote stack head with NULL (lock-free pop all)
|
||
uintptr_t head = atomic_exchange_explicit(&page->remote_head, (uintptr_t)0,
|
||
memory_order_acq_rel);
|
||
if (!head) {
|
||
atomic_store_explicit(&page->remote_count, 0, memory_order_release);
|
||
return 0; // Race: someone else drained it
|
||
}
|
||
|
||
// Reset remote count (FIX #6: use release for future drain checks to see)
|
||
atomic_store_explicit(&page->remote_count, 0, memory_order_release);
|
||
|
||
// Walk the remote stack and count blocks
|
||
int drained = 0;
|
||
PoolBlock* cur = (PoolBlock*)head;
|
||
PoolBlock* tail = NULL;
|
||
|
||
while (cur) {
|
||
drained++;
|
||
tail = cur;
|
||
cur = cur->next;
|
||
}
|
||
|
||
// Append remote stack to local freelist (splice in front for simplicity)
|
||
if (tail) {
|
||
tail->next = page->freelist;
|
||
page->freelist = (PoolBlock*)head;
|
||
page->free_count += drained;
|
||
}
|
||
|
||
atomic_fetch_add(&g_mf2_drain_count, 1);
|
||
atomic_fetch_add(&g_mf2_drain_blocks, drained);
|
||
|
||
// CRITICAL FIX: Check if new remotes arrived DURING drain
|
||
// If so, re-enqueue to owner's pending queue (avoid losing remotes!)
|
||
unsigned int post_drain_count = atomic_load_explicit(&page->remote_count, memory_order_acquire);
|
||
if (post_drain_count >= 1 && page->owner_tp) { // Use same threshold as initial enqueue
|
||
// New remotes arrived during drain, re-enqueue for next round
|
||
// Note: This is safe because flag was cleared earlier
|
||
mf2_enqueue_pending(page->owner_tp, page);
|
||
}
|
||
|
||
return drained;
|
||
}
|
||
|
||
// ===========================================================================
|
||
// Pending Queue Operations (MPSC Lock-Free Stack)
|
||
// ===========================================================================
|
||
|
||
// Enqueue page to owner's pending queue (called by remote threads)
|
||
// MPSC: Multiple producers (remote free threads), single consumer (owner)
|
||
static void mf2_enqueue_pending(MF2_ThreadPages* owner_tp, MidPage* page) {
|
||
if (!owner_tp || !page) return;
|
||
|
||
// Already in pending? Skip (avoid duplicate enqueue)
|
||
_Bool was_pending = atomic_exchange_explicit(&page->in_remote_pending, true, memory_order_acq_rel);
|
||
if (was_pending) {
|
||
return; // Already enqueued, nothing to do
|
||
}
|
||
|
||
atomic_fetch_add(&g_mf2_pending_enqueued, 1);
|
||
|
||
// Push to owner's pending stack (Treiber stack algorithm)
|
||
uintptr_t old_head;
|
||
do {
|
||
old_head = atomic_load_explicit(&owner_tp->pages_remote_pending[page->class_idx], memory_order_relaxed);
|
||
page->next_pending = (MidPage*)old_head;
|
||
} while (!atomic_compare_exchange_weak_explicit(
|
||
&owner_tp->pages_remote_pending[page->class_idx],
|
||
&old_head, (uintptr_t)page,
|
||
memory_order_release, // Publish page
|
||
memory_order_relaxed));
|
||
|
||
// 0→1 detection: Increment adoptable count for this class
|
||
// This enables O(1) early return in try_adopt (if count==0, no scan needed)
|
||
if (old_head == 0) {
|
||
atomic_fetch_add_explicit(&g_adoptable_count[page->class_idx], 1, memory_order_relaxed);
|
||
}
|
||
}
|
||
|
||
// Dequeue one page from pending queue (called by owner thread or adopter)
|
||
// Uses CAS for correctness (multi-consumer in adoption path)
|
||
static MidPage* mf2_dequeue_pending(MF2_ThreadPages* tp, int class_idx) {
|
||
if (!tp) return NULL;
|
||
|
||
uintptr_t old_head;
|
||
do {
|
||
old_head = atomic_load_explicit(&tp->pages_remote_pending[class_idx], memory_order_acquire);
|
||
if (old_head == 0) {
|
||
return NULL; // Queue empty
|
||
}
|
||
MidPage* page = (MidPage*)old_head;
|
||
|
||
// CAS to pop head
|
||
if (atomic_compare_exchange_weak_explicit(
|
||
&tp->pages_remote_pending[class_idx],
|
||
&old_head, (uintptr_t)page->next_pending,
|
||
memory_order_acq_rel, memory_order_relaxed)) {
|
||
// Successfully dequeued
|
||
MidPage* next = page->next_pending;
|
||
page->next_pending = NULL; // Clear link
|
||
|
||
// If queue became empty (next==NULL), decrement adoptable count
|
||
// This enables O(1) early return in try_adopt when all queues empty
|
||
if (next == NULL) {
|
||
atomic_fetch_sub_explicit(&g_adoptable_count[class_idx], 1, memory_order_relaxed);
|
||
}
|
||
|
||
return page;
|
||
}
|
||
} while (1);
|
||
}
|
||
|
||
// ===========================================================================
|
||
// End of Pending Queue Operations
|
||
// ===========================================================================
|
||
|
||
// Forward declarations
|
||
static void* mf2_alloc_slow(int class_idx, size_t size, uintptr_t site_id);
|
||
|
||
// ===========================================================================
|
||
// Helper Functions (Clean & Modular)
|
||
// ===========================================================================
|
||
|
||
// Helper: Make page active (move old active to full_pages)
|
||
static inline void mf2_make_page_active(MF2_ThreadPages* tp, int class_idx, MidPage* page) {
|
||
if (!tp || !page) return;
|
||
|
||
// Move old active page to full_pages (if any)
|
||
if (tp->active_page[class_idx]) {
|
||
MidPage* old_active = tp->active_page[class_idx];
|
||
old_active->next_page = tp->full_pages[class_idx];
|
||
tp->full_pages[class_idx] = old_active;
|
||
}
|
||
|
||
// Set new page as active
|
||
tp->active_page[class_idx] = page;
|
||
page->next_page = NULL;
|
||
}
|
||
|
||
// Helper: Drain page and add to partial list (LIFO for cache locality)
|
||
// Returns true if page has free blocks after drain
|
||
static inline bool mf2_try_drain_to_partial(MF2_ThreadPages* tp, int class_idx, MidPage* page) {
|
||
if (!tp || !page) return false;
|
||
|
||
// Drain remote frees
|
||
int drained = mf2_drain_remote_frees(page);
|
||
|
||
// If page has freelist after drain, add to partial list (LIFO)
|
||
if (page->freelist) {
|
||
atomic_fetch_add(&g_mf2_page_reuse_count, 1);
|
||
page->next_page = tp->partial_pages[class_idx];
|
||
tp->partial_pages[class_idx] = page;
|
||
return true;
|
||
}
|
||
|
||
// No freelist, return to full_pages
|
||
page->next_page = tp->full_pages[class_idx];
|
||
tp->full_pages[class_idx] = page;
|
||
return false;
|
||
}
|
||
|
||
// Helper: Drain page and activate if successful (Direct Handoff - backward compat)
|
||
// Returns true if page was activated
|
||
static inline bool mf2_try_drain_and_activate(MF2_ThreadPages* tp, int class_idx, MidPage* page) {
|
||
if (!tp || !page) return false;
|
||
|
||
// Drain remote frees
|
||
int drained = mf2_drain_remote_frees(page);
|
||
|
||
// If page has freelist after drain, make it active immediately
|
||
if (page->freelist) {
|
||
atomic_fetch_add(&g_mf2_page_reuse_count, 1);
|
||
mf2_make_page_active(tp, class_idx, page);
|
||
return true;
|
||
}
|
||
|
||
// No freelist, return to full_pages
|
||
page->next_page = tp->full_pages[class_idx];
|
||
tp->full_pages[class_idx] = page;
|
||
return false;
|
||
}
|
||
|
||
// Helper: Try to reuse pages from own pending queue (must-reuse gate part 1)
|
||
// Returns true if a page was successfully drained and activated
|
||
static bool mf2_try_reuse_own_pending(MF2_ThreadPages* tp, int class_idx) {
|
||
if (!tp) return false;
|
||
|
||
// Budget: Process up to N pages to avoid blocking
|
||
for (int budget = 0; budget < MF2_PENDING_QUEUE_BUDGET; budget++) {
|
||
MidPage* pending_page = mf2_dequeue_pending(tp, class_idx);
|
||
if (!pending_page) break; // Queue empty
|
||
|
||
atomic_fetch_add(&g_mf2_pending_drained, 1);
|
||
|
||
// Clear pending flag (no longer in queue)
|
||
atomic_store_explicit(&pending_page->in_remote_pending, false, memory_order_release);
|
||
|
||
// DIRECT HANDOFF: Drain and activate if successful
|
||
if (mf2_try_drain_and_activate(tp, class_idx, pending_page)) {
|
||
return true; // Success! Page is now active
|
||
}
|
||
// No freelist after drain, page returned to full_pages by helper
|
||
}
|
||
return false; // No pages available for reuse
|
||
}
|
||
|
||
// Helper: Try to drain remotes from active page (must-reuse gate part 2)
|
||
// Returns true if active page has freelist after drain
|
||
static bool mf2_try_drain_active_remotes(MF2_ThreadPages* tp, int class_idx) {
|
||
if (!tp) return false;
|
||
|
||
MidPage* page = tp->active_page[class_idx];
|
||
if (!page) return false;
|
||
|
||
atomic_fetch_add(&g_mf2_slow_checked_drain, 1);
|
||
unsigned int remote_cnt = atomic_load_explicit(&page->remote_count, memory_order_seq_cst);
|
||
|
||
if (remote_cnt > 0) {
|
||
atomic_fetch_add(&g_mf2_slow_found_remote, 1);
|
||
int drained = mf2_drain_remote_frees(page);
|
||
if (drained > 0 && page->freelist) {
|
||
atomic_fetch_add(&g_mf2_drain_success, 1);
|
||
return true; // Success! Active page now has freelist
|
||
}
|
||
}
|
||
return false; // No remotes or drain failed
|
||
}
|
||
|
||
// Helper: Allocate new page and make it active
|
||
// Returns the newly allocated page (or NULL on OOM)
|
||
static MidPage* mf2_alloc_and_activate_new_page(MF2_ThreadPages* tp, int class_idx) {
|
||
if (!tp) return NULL;
|
||
|
||
atomic_fetch_add(&g_mf2_new_page_count, 1);
|
||
|
||
// DEBUG: Log why we're allocating new page (first N samples)
|
||
static _Atomic int new_page_samples = 0;
|
||
int sample_idx = atomic_fetch_add_explicit(&new_page_samples, 1, memory_order_relaxed);
|
||
if (sample_idx < MF2_DEBUG_SAMPLE_COUNT) {
|
||
// Count adoptable pages across all threads
|
||
int total_adoptable = 0;
|
||
for (int i = 0; i < POOL_NUM_CLASSES; i++) {
|
||
total_adoptable += atomic_load_explicit(&g_adoptable_count[i], memory_order_relaxed);
|
||
}
|
||
MF2_DEBUG_LOG("NEW_PAGE %d: class=%d, own_pending=%p, adoptable_total=%d, active=%p, full=%p",
|
||
sample_idx, class_idx,
|
||
(void*)atomic_load_explicit(&tp->pages_remote_pending[class_idx], memory_order_relaxed),
|
||
total_adoptable,
|
||
tp->active_page[class_idx],
|
||
tp->full_pages[class_idx]);
|
||
}
|
||
|
||
MidPage* page = mf2_alloc_new_page(class_idx);
|
||
if (!page) {
|
||
return NULL; // OOM
|
||
}
|
||
|
||
// Move current active page to full list (if any)
|
||
if (tp->active_page[class_idx]) {
|
||
MidPage* old_page = tp->active_page[class_idx];
|
||
old_page->next_page = tp->full_pages[class_idx];
|
||
tp->full_pages[class_idx] = old_page;
|
||
}
|
||
|
||
// Set new page as active
|
||
tp->active_page[class_idx] = page;
|
||
tp->page_count[class_idx]++;
|
||
|
||
return page;
|
||
}
|
||
|
||
// ===========================================================================
|
||
// End of Helper Functions
|
||
// ===========================================================================
|
||
|
||
// Consumer-Driven Adoption: Try to adopt a page from ANY thread's pending queue
|
||
// Returns true if a page was successfully adopted and activated
|
||
// Called from alloc_slow when allocating thread needs memory
|
||
static bool mf2_try_adopt_pending(MF2_ThreadPages* me, int class_idx) {
|
||
if (!me) return false;
|
||
|
||
// IMMEDIATE FIX #1: Early return if no adoptable pages (O(1) gating)
|
||
// Avoids scanning empty queues (major performance win!)
|
||
int adoptable = atomic_load_explicit(&g_adoptable_count[class_idx], memory_order_relaxed);
|
||
if (adoptable == 0) return false; // All queues empty, no scan needed
|
||
|
||
// Get global thread registry
|
||
int num_tp = atomic_load_explicit(&g_num_thread_pages, memory_order_acquire);
|
||
if (num_tp == 0) return false;
|
||
|
||
// IMMEDIATE FIX #2: Limit scan to MAX_QUEUES threads (configurable via HAKMEM_MF2_MAX_QUEUES)
|
||
// Prevents excessive scanning overhead (2-8 threads is usually enough)
|
||
int scan_limit = (num_tp < g_mf2_max_queues) ? num_tp : g_mf2_max_queues;
|
||
|
||
// Round-robin scan (limited number of threads, not ALL!)
|
||
static _Atomic uint64_t adopt_counter = 0;
|
||
uint64_t start_idx = atomic_fetch_add_explicit(&adopt_counter, 1, memory_order_relaxed);
|
||
|
||
for (int i = 0; i < scan_limit; i++) {
|
||
int tp_idx = (start_idx + i) % num_tp;
|
||
MF2_ThreadPages* other_tp = (MF2_ThreadPages*)atomic_load_explicit(
|
||
(atomic_uintptr_t*)&g_all_thread_pages[tp_idx], memory_order_acquire);
|
||
|
||
if (!other_tp) continue;
|
||
|
||
// Route P: Idle Detection - Only adopt from idle owners
|
||
// Check if owner is still actively allocating (threshold configurable via env var)
|
||
uint64_t now_tsc = mf2_rdtsc();
|
||
uint64_t owner_last_alloc = atomic_load_explicit(&other_tp->last_alloc_tsc, memory_order_relaxed);
|
||
uint64_t idle_threshold_cycles = (uint64_t)g_mf2_idle_threshold_us * MF2_TSC_CYCLES_PER_US;
|
||
|
||
if ((now_tsc - owner_last_alloc) < idle_threshold_cycles) {
|
||
continue; // Owner still active, skip adoption
|
||
}
|
||
|
||
// IMMEDIATE FIX #3: Claim exclusive access (prevent multi-consumer CAS thrashing!)
|
||
// Only one thread scans each queue at a time → eliminates CAS contention
|
||
if (atomic_flag_test_and_set_explicit(&other_tp->pending_claim[class_idx], memory_order_acquire)) {
|
||
continue; // Another thread is already scanning this queue, skip
|
||
}
|
||
|
||
// Try to dequeue a pending page from this thread
|
||
MidPage* page = mf2_dequeue_pending(other_tp, class_idx);
|
||
if (!page) {
|
||
// Queue empty, release claim and try next thread
|
||
atomic_flag_clear_explicit(&other_tp->pending_claim[class_idx], memory_order_release);
|
||
continue;
|
||
}
|
||
|
||
// Clear pending flag (no longer in queue)
|
||
atomic_store_explicit(&page->in_remote_pending, false, memory_order_release);
|
||
|
||
// Check lease: Has enough time passed since last transfer? (configurable via HAKMEM_MF2_LEASE_MS)
|
||
// 0ms = disabled (no lease check), >0 = lease period in milliseconds
|
||
uint64_t now = mf2_rdtsc();
|
||
uint64_t last_transfer = page->last_transfer_time;
|
||
if (g_mf2_lease_ms > 0 && last_transfer != 0) {
|
||
// Calculate lease cycles from ms (approx 3GHz CPU)
|
||
uint64_t lease_cycles = (uint64_t)g_mf2_lease_ms * (MF2_TSC_CYCLES_PER_US * 1000ULL);
|
||
if ((now - last_transfer) < lease_cycles) {
|
||
// Lease still active, return page to full_pages (don't thrash ownership)
|
||
page->next_page = other_tp->full_pages[class_idx];
|
||
other_tp->full_pages[class_idx] = page;
|
||
// Release claim before continuing
|
||
atomic_flag_clear_explicit(&other_tp->pending_claim[class_idx], memory_order_release);
|
||
continue; // Try next thread
|
||
}
|
||
}
|
||
|
||
// Try to transfer ownership using CAS
|
||
pthread_t old_owner = page->owner_tid;
|
||
pthread_t new_owner = pthread_self();
|
||
|
||
// Note: pthread_t may not be atomic-compatible on all platforms
|
||
// For now, we'll use a simple write (ownership transfer is rare)
|
||
// TODO: If thrashing is observed, add atomic CAS with serialization
|
||
page->owner_tid = new_owner;
|
||
page->owner_tp = me;
|
||
page->last_transfer_time = now;
|
||
|
||
// DEBUG: Log drain state
|
||
static _Atomic int adopt_samples = 0;
|
||
int sample_idx = atomic_fetch_add_explicit(&adopt_samples, 1, memory_order_relaxed);
|
||
unsigned int pre_remote = atomic_load_explicit(&page->remote_count, memory_order_relaxed);
|
||
unsigned int pre_free = page->free_count;
|
||
PoolBlock* pre_freelist = page->freelist;
|
||
|
||
// Drain remote frees
|
||
int drained = mf2_drain_remote_frees(page);
|
||
|
||
// DEBUG: Log result (first 10 samples)
|
||
if (sample_idx < 10) {
|
||
MF2_DEBUG_LOG("ADOPT_DRAIN %d: class=%d, remote_cnt=%u, drained=%d, pre_free=%u, post_free=%u, pre_freelist=%p, post_freelist=%p",
|
||
sample_idx, class_idx, pre_remote, drained,
|
||
pre_free, page->free_count, pre_freelist, page->freelist);
|
||
}
|
||
|
||
// Make adopted page ACTIVE immediately (not partial!)
|
||
// Adoption needs immediate activation for caller's mf2_alloc_fast()
|
||
// Partial list is only for own pending queue drains
|
||
if (page->freelist) {
|
||
atomic_fetch_add(&g_mf2_page_reuse_count, 1);
|
||
atomic_fetch_add(&g_mf2_pending_drained, 1);
|
||
atomic_fetch_add(&g_mf2_drain_success, 1);
|
||
|
||
// Make it active (move old active to full_pages)
|
||
mf2_make_page_active(me, class_idx, page);
|
||
|
||
// Release claim before returning SUCCESS
|
||
atomic_flag_clear_explicit(&other_tp->pending_claim[class_idx], memory_order_release);
|
||
return true; // SUCCESS! Page adopted and activated
|
||
}
|
||
|
||
// No freelist after drain, return to MY full_pages (I'm the new owner!)
|
||
page->next_page = me->full_pages[class_idx];
|
||
me->full_pages[class_idx] = page;
|
||
// Release claim before continuing search
|
||
atomic_flag_clear_explicit(&other_tp->pending_claim[class_idx], memory_order_release);
|
||
// Continue searching for a better page
|
||
}
|
||
|
||
return false; // No adoptable pages found
|
||
}
|
||
|
||
// Fast allocation path (owner thread, NO LOCK!)
|
||
static inline void* mf2_alloc_fast(int class_idx, size_t size, uintptr_t site_id) {
|
||
// Get thread-local page lists
|
||
MF2_ThreadPages* tp = mf2_thread_pages_get();
|
||
if (!tp) return NULL;
|
||
|
||
// Get active page for this class
|
||
MidPage* page = tp->active_page[class_idx];
|
||
if (!page) {
|
||
// No active page, go to slow path
|
||
return mf2_alloc_slow(class_idx, size, site_id);
|
||
}
|
||
|
||
// FAST PATH: Pop from page-local freelist (NO LOCK!)
|
||
if (page->freelist) {
|
||
atomic_fetch_add(&g_mf2_alloc_fast_hit, 1);
|
||
|
||
// Route P: Update activity tracking for idle detection
|
||
atomic_store_explicit(&tp->last_alloc_tsc, mf2_rdtsc(), memory_order_relaxed);
|
||
|
||
PoolBlock* block = page->freelist;
|
||
page->freelist = block->next;
|
||
page->free_count--;
|
||
|
||
// Increment in-use count (atomic for cross-thread visibility)
|
||
atomic_fetch_add_explicit(&page->in_use, 1, memory_order_relaxed);
|
||
|
||
// Return user pointer (skip header)
|
||
return (char*)block + HEADER_SIZE;
|
||
}
|
||
|
||
// Local freelist empty, go to slow path
|
||
return mf2_alloc_slow(class_idx, size, site_id);
|
||
}
|
||
|
||
// Slow allocation path (drain remote or allocate new page)
|
||
static void* mf2_alloc_slow(int class_idx, size_t size, uintptr_t site_id) {
|
||
(void)site_id; // Unused for now
|
||
|
||
atomic_fetch_add(&g_mf2_alloc_slow_hit, 1);
|
||
|
||
// Get thread-local page lists
|
||
MF2_ThreadPages* tp = mf2_thread_pages_get();
|
||
if (!tp) return NULL;
|
||
|
||
// ===========================================================================
|
||
// Allocation Strategy (Must-Reuse Order)
|
||
// ===========================================================================
|
||
// 1. MUST-REUSE GATE (Part 1): Drain own pending queue
|
||
// - Process up to 4 pages to avoid blocking
|
||
// - Direct handoff: activate first successful drain immediately
|
||
if (mf2_try_reuse_own_pending(tp, class_idx)) {
|
||
return mf2_alloc_fast(class_idx, size, site_id);
|
||
}
|
||
|
||
// 2. MUST-REUSE GATE (Part 2): Drain active page remotes
|
||
// - Check if current active page has remote frees
|
||
// - Drain and retry allocation if successful
|
||
if (mf2_try_drain_active_remotes(tp, class_idx)) {
|
||
return mf2_alloc_fast(class_idx, size, site_id);
|
||
}
|
||
|
||
// HISTORICAL NOTE: full_pages scan removed
|
||
// Old approach: Scan full_pages looking for pages with remotes
|
||
// Problem: Drained pages consumed before owner can scan them
|
||
// New approach: Direct Handoff immediately activates drained pages
|
||
// Result: full_pages scan always finds 0 pages (100% waste)
|
||
//
|
||
// Benchmark evidence (before removal):
|
||
// - Full scan checked: 1,879,484 pages
|
||
// - Full scan found: 0 pages (0% success rate!)
|
||
|
||
// 3. Consumer-Driven Adoption (Route P with idle detection)
|
||
// - Only adopt from idle owners (haven't allocated in >150µs)
|
||
// - Prevents "adoption stealing" from active owners
|
||
if (mf2_try_adopt_pending(tp, class_idx)) {
|
||
return mf2_alloc_fast(class_idx, size, site_id);
|
||
}
|
||
|
||
// 4. MUST-REUSE GATE (Final): Allocate new page (last resort)
|
||
// - Only reached after exhausting all reuse opportunities
|
||
// - Order: pending queue → active drain → adoption → NEW
|
||
MidPage* page = mf2_alloc_and_activate_new_page(tp, class_idx);
|
||
if (!page) {
|
||
return NULL; // OOM
|
||
}
|
||
|
||
// Retry allocation from new page
|
||
return mf2_alloc_fast(class_idx, size, site_id);
|
||
}
|
||
|
||
// Forward declaration of slow free path
|
||
static void mf2_free_slow(MidPage* page, void* ptr);
|
||
|
||
// Strategy A: Global Round-Robin Drain (Cross-Thread Pending Queue)
|
||
// Fast free path (owner thread, NO LOCK!)
|
||
static inline void mf2_free_fast(MidPage* page, void* ptr) {
|
||
if (!page || !ptr) return;
|
||
|
||
atomic_fetch_add(&g_mf2_free_owner_count, 1);
|
||
|
||
// Get block pointer (rewind to header)
|
||
PoolBlock* block = (PoolBlock*)((char*)ptr - HEADER_SIZE);
|
||
|
||
// FAST PATH: Push to page-local freelist (NO LOCK!)
|
||
block->next = page->freelist;
|
||
page->freelist = block;
|
||
page->free_count++;
|
||
|
||
// Decrement in-use count (atomic for cross-thread visibility)
|
||
int old_in_use = atomic_fetch_sub_explicit(&page->in_use, 1, memory_order_release);
|
||
|
||
// Check if page is now empty (all blocks free)
|
||
if (old_in_use == 1 && page->free_count == page->capacity) {
|
||
// Memory efficiency: Return empty pages to OS via MADV_DONTNEED
|
||
// Keeps VA mapped (no munmap), but releases physical memory
|
||
hak_batch_add_page(page->base, POOL_PAGE_SIZE);
|
||
}
|
||
}
|
||
|
||
// Slow free path (cross-thread free to remote stack)
|
||
static void mf2_free_slow(MidPage* page, void* ptr) {
|
||
if (!page || !ptr) return;
|
||
|
||
atomic_fetch_add(&g_mf2_free_remote_count, 1);
|
||
|
||
// Get block pointer
|
||
PoolBlock* block = (PoolBlock*)((char*)ptr - HEADER_SIZE);
|
||
|
||
// Push to page's remote stack (lock-free MPSC)
|
||
uintptr_t old_head;
|
||
do {
|
||
old_head = atomic_load_explicit(&page->remote_head, memory_order_acquire);
|
||
block->next = (PoolBlock*)old_head;
|
||
} while (!atomic_compare_exchange_weak_explicit(
|
||
&page->remote_head, &old_head, (uintptr_t)block,
|
||
memory_order_release, memory_order_relaxed));
|
||
|
||
// Increment remote count and detect threshold for enqueueing
|
||
unsigned int old_count = atomic_fetch_add_explicit(&page->remote_count, 1, memory_order_seq_cst);
|
||
|
||
// CRITICAL FIX: Use threshold-based enqueueing instead of 0→1 edge
|
||
// Problem: 0→1 causes ping-pong (drain 1 block → next free triggers 0→1 again)
|
||
// Solution: Only enqueue when remotes accumulate to threshold (better batching)
|
||
//
|
||
// Threshold values (configurable via HAKMEM_MF2_ENQUEUE_THRESHOLD, default=4):
|
||
// 1 = immediate (0→1 edge, causes ping-pong)
|
||
// 4 = balanced (batch 4 blocks before notifying owner)
|
||
// 8 = aggressive batching (higher latency, but better efficiency)
|
||
//
|
||
// We enqueue on transitions TO the threshold (old_count == threshold-1)
|
||
static int g_enqueue_threshold = 1; // 1=immediate (0→1 edge), 2=batch-2, 4=batch-4
|
||
if (old_count + 1 == (unsigned int)g_enqueue_threshold) {
|
||
// Remote count just reached threshold, notify owner
|
||
if (page->owner_tp) {
|
||
mf2_enqueue_pending(page->owner_tp, page);
|
||
}
|
||
}
|
||
|
||
// DEBUG: Sample first 10 remote frees - Disabled for performance
|
||
// static _Atomic int remote_free_samples = 0;
|
||
// int sample = atomic_fetch_add_explicit(&remote_free_samples, 1, memory_order_relaxed);
|
||
// if (sample < 10) {
|
||
// fprintf(stderr, "[REMOTE_FREE %d] ptr=%p → page=%p (base=%p), remote_count=%u (was %u), EDGE=%s\n",
|
||
// sample, ptr, page, page->base, old_count + 1, old_count, (old_count == 0) ? "YES" : "NO");
|
||
// }
|
||
|
||
// Decrement in-use count
|
||
int old_in_use = atomic_fetch_sub_explicit(&page->in_use, 1, memory_order_release);
|
||
|
||
// Check if page is now empty (FIX #6: acquire to see all remote frees)
|
||
if (old_in_use == 1 && page->free_count + atomic_load_explicit(&page->remote_count, memory_order_acquire) >= page->capacity) {
|
||
// Memory efficiency: Return empty pages to OS via MADV_DONTNEED
|
||
// Keeps VA mapped (no munmap), but releases physical memory
|
||
hak_batch_add_page(page->base, POOL_PAGE_SIZE);
|
||
}
|
||
}
|
||
|
||
// Top-level free dispatcher
|
||
static void mf2_free(void* ptr) {
|
||
if (!ptr) return;
|
||
|
||
// O(1) page lookup (mimalloc's magic!)
|
||
MidPage* page = mf2_addr_to_page(ptr);
|
||
if (!page) {
|
||
// Not a MF2 page (shouldn't happen if MF2 is enabled properly)
|
||
return;
|
||
}
|
||
|
||
// Check if we're the owner (fast path)
|
||
MF2_ThreadPages* tp = mf2_thread_pages_get();
|
||
|
||
if (tp && page->owner_tid == tp->my_tid) {
|
||
// Fast: Owner thread, push to local freelist (NO LOCK!)
|
||
mf2_free_fast(page, ptr);
|
||
} else {
|
||
// Slow: Cross-thread free, push to remote stack (lock-free)
|
||
mf2_free_slow(page, ptr);
|
||
}
|
||
}
|
||
|
||
// ===========================================================================
|
||
// Global pool state (simplified: single-threaded for MVP)
|
||
static struct {
|
||
PoolBlock* freelist[POOL_NUM_CLASSES][POOL_NUM_SHARDS];
|
||
|
||
// Locks: per (class, shard) freelist to allow concurrent operations
|
||
PaddedMutex freelist_locks[POOL_NUM_CLASSES][POOL_NUM_SHARDS];
|
||
|
||
// Non-empty bitmap (O(1) empty class skip)
|
||
// Bit i = 1 if freelist[class][shard] is non-empty
|
||
// Use atomic to avoid class-wide locks
|
||
atomic_uint_fast64_t nonempty_mask[POOL_NUM_CLASSES]; // 1 bit per shard
|
||
|
||
// Remote-free MPSC stacks per (class, shard): lock-free producers, drained under lock on alloc
|
||
atomic_uintptr_t remote_head[POOL_NUM_CLASSES][POOL_NUM_SHARDS];
|
||
atomic_uint remote_count[POOL_NUM_CLASSES][POOL_NUM_SHARDS];
|
||
|
||
// Statistics
|
||
uint64_t hits[POOL_NUM_CLASSES] __attribute__((aligned(64)));
|
||
uint64_t misses[POOL_NUM_CLASSES] __attribute__((aligned(64)));
|
||
uint64_t refills[POOL_NUM_CLASSES] __attribute__((aligned(64)));
|
||
uint64_t frees[POOL_NUM_CLASSES] __attribute__((aligned(64)));
|
||
uint64_t total_bytes_allocated __attribute__((aligned(64)));
|
||
uint64_t total_pages_allocated __attribute__((aligned(64)));
|
||
|
||
// Per-class page accounting (for Soft CAP guidance)
|
||
uint64_t pages_by_class[POOL_NUM_CLASSES] __attribute__((aligned(64)));
|
||
|
||
// ACE: per-class bundle factor for refill (1..4) + last snapshot
|
||
int bundle_factor[POOL_NUM_CLASSES];
|
||
uint64_t last_hits[POOL_NUM_CLASSES];
|
||
uint64_t last_misses[POOL_NUM_CLASSES];
|
||
|
||
int initialized;
|
||
int tls_free_enabled; // env: HAKMEM_POOL_TLS_FREE (default: 1)
|
||
|
||
// Extra metrics (for learner logging): all relaxed atomics
|
||
atomic_uint_fast64_t trylock_attempts __attribute__((aligned(64)));
|
||
atomic_uint_fast64_t trylock_success __attribute__((aligned(64)));
|
||
atomic_uint_fast64_t ring_underflow __attribute__((aligned(64)));
|
||
} g_pool;
|
||
|
||
static int g_wrap_l2_enabled = 0; // env: HAKMEM_WRAP_L2=1 to allow in wrappers
|
||
static int g_shard_mix_enabled = 0; // env: HAKMEM_SHARD_MIX=1 to enable stronger hashing
|
||
static int g_tls_ring_enabled = 1; // env: HAKMEM_POOL_TLS_RING=1 to enable TLS ring
|
||
static int g_trylock_probes = 3; // env: HAKMEM_TRYLOCK_PROBES (1..8)
|
||
static int g_ring_return_div = 2; // env: HAKMEM_RING_RETURN_DIV (2=half, 3=third)
|
||
static int g_tls_lo_max = 256; // env: HAKMEM_TLS_LO_MAX (LIFO size cap)
|
||
int g_hdr_light_enabled = 0; // env: HAKMEM_HDR_LIGHT=1 (minimize extra fields), =2 (no header writes/validation)
|
||
static int g_pool_min_bundle = 2; // env: HAKMEM_POOL_MIN_BUNDLE (default 2)
|
||
// Sampled counter updates to reduce hot-path stores: 1/2^k
|
||
static int g_count_sample_exp = 10; // env: HAKMEM_POOL_COUNT_SAMPLE (0..16)
|
||
static __thread uint32_t t_pool_rng = 0x243f6a88u; // per-thread RNG for sampling
|
||
|
||
// Size class table (for O(1) lookup). Index 5/6 are Bridge classes for 32-64KB gap.
|
||
// 7 classes including Bridge classes (40KB, 52KB) to fill 32-64KB gap
|
||
static size_t g_class_sizes[POOL_NUM_CLASSES] = {
|
||
POOL_CLASS_2KB, // 2 KB
|
||
POOL_CLASS_4KB, // 4 KB
|
||
POOL_CLASS_8KB, // 8 KB
|
||
POOL_CLASS_16KB, // 16 KB
|
||
POOL_CLASS_32KB, // 32 KB
|
||
POOL_CLASS_40KB, // 40 KB (Bridge class 0)
|
||
POOL_CLASS_52KB // 52 KB (Bridge class 1)
|
||
};
|
||
|
||
// Blocks per page (for each class)
|
||
__attribute__((unused)) static const int g_blocks_per_page[POOL_NUM_CLASSES] = {
|
||
POOL_PAGE_SIZE / POOL_CLASS_2KB, // 32 blocks (2KiB)
|
||
POOL_PAGE_SIZE / POOL_CLASS_4KB, // 16 blocks (4KiB)
|
||
POOL_PAGE_SIZE / POOL_CLASS_8KB, // 8 blocks (8KiB)
|
||
POOL_PAGE_SIZE / POOL_CLASS_16KB, // 4 blocks (16KiB)
|
||
POOL_PAGE_SIZE / POOL_CLASS_32KB, // 2 blocks (32KiB)
|
||
POOL_PAGE_SIZE / POOL_CLASS_40KB, // 1 block (40KiB Bridge)
|
||
POOL_PAGE_SIZE / POOL_CLASS_52KB // 1 block (52KiB Bridge)
|
||
};
|
||
|
||
// ===========================================================================
|
||
// Helper Functions
|
||
// ===========================================================================
|
||
|
||
// Write minimal header for Mid allocation (fast-return friendly)
|
||
static inline void mid_set_header(AllocHeader* hdr, size_t class_sz, uintptr_t site_id) {
|
||
// For Mid, prefer headerless operation when HDR_LIGHT>=1.
|
||
// Debug or non-Mid callers can still write full headers elsewhere.
|
||
if (g_hdr_light_enabled >= 1) return; // skip header on alloc hot path
|
||
hdr->magic = HAKMEM_MAGIC;
|
||
hdr->method = ALLOC_METHOD_POOL;
|
||
hdr->size = class_sz;
|
||
if (!g_hdr_light_enabled) {
|
||
hdr->alloc_site = site_id;
|
||
hdr->class_bytes = 0;
|
||
hdr->owner_tid = (uintptr_t)(uintptr_t)pthread_self();
|
||
}
|
||
}
|
||
|
||
// Branchless LUT (Lookup Table) for O(1) class determination
|
||
// Expanded to 53 entries for Bridge classes (40KB, 52KB)
|
||
static const uint8_t SIZE_TO_CLASS[53] = {
|
||
0,0,0, // 0-2KB → Class 0
|
||
1,1, // 3-4KB → Class 1
|
||
2,2,2,2, // 5-8KB → Class 2
|
||
3,3,3,3,3,3,3,3, // 9-16KB → Class 3
|
||
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, // 17-32KB → Class 4
|
||
5,5,5,5,5,5,5,5, // 33-40KB → Class 5 (Bridge class 0)
|
||
6,6,6,6,6,6,6,6,6,6,6,6 // 41-52KB → Class 6 (Bridge class 1)
|
||
};
|
||
|
||
// Get size class index from size (0-6, or -1 if out of range)
|
||
// Updated range check for Bridge classes (0-52KB)
|
||
static inline int hak_pool_get_class_index(size_t size) {
|
||
// Fast path: exact match against configured class sizes (covers Bridge classes)
|
||
// Note: size passed here should already be a rounded class size from ACE.
|
||
for (int i = 0; i < POOL_NUM_CLASSES; i++) {
|
||
size_t cs = g_class_sizes[i];
|
||
if (cs != 0 && size == cs) return i;
|
||
}
|
||
// Fallback: map arbitrary size to nearest fixed class range via LUT (legacy behavior)
|
||
uint32_t kb = (uint32_t)((size + 1023) >> 10); // Round up to KB units
|
||
return (kb < 53) ? SIZE_TO_CLASS[kb] : -1; // Expanded to 53KB for Bridge classes
|
||
}
|
||
|
||
// Get shard index from site_id (0-63)
|
||
int hak_pool_get_shard_index(uintptr_t site_id) {
|
||
if (!g_shard_mix_enabled) {
|
||
// Legacy: Shift by 4 to reduce collision (instruction alignment)
|
||
return (int)((site_id >> 4) & (POOL_NUM_SHARDS - 1));
|
||
}
|
||
// SplitMix64-like mixer with thread id salt for better dispersion
|
||
uint64_t x = (uint64_t)site_id;
|
||
uint64_t tid = (uint64_t)(uintptr_t)pthread_self();
|
||
x ^= (tid << 1);
|
||
x += 0x9e3779b97f4a7c15ULL;
|
||
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9ULL;
|
||
x = (x ^ (x >> 27)) * 0x94d049bb133111ebULL;
|
||
x = (x ^ (x >> 31));
|
||
return (int)((uint32_t)x & (POOL_NUM_SHARDS - 1));
|
||
}
|
||
|
||
// TLS helpers
|
||
#include "box/pool_tls_core.inc.h"
|
||
|
||
|
||
// Refill/ACE (boxed)
|
||
#include "box/pool_refill.inc.h"
|
||
|
||
// Init/Shutdown + MF2 debug (boxed)
|
||
#include "box/pool_init_api.inc.h"
|
||
|
||
// Pool statistics (boxed)
|
||
#include "box/pool_stats.inc.h"
|
||
|
||
// Public API (boxed): alloc/free/lookup/free_fast
|
||
#include "box/pool_api.inc.h"
|