Major breakthrough: sh8bench now completes without SIGSEGV! Added defensive refcounting and failsafe mechanisms to prevent use-after-free and corruption propagation. Changes: 1. SuperSlab Refcount Pinning (core/box/tls_sll_box.h) - tls_sll_push_impl: increment refcount before adding to list - tls_sll_pop_impl: decrement refcount when removing from list - Prevents SuperSlab from being freed while TLS SLL holds pointers 2. SuperSlab Release Guards (core/superslab_allocate.c, shared_pool_release.c) - Check refcount > 0 before freeing SuperSlab - If refcount > 0, defer release instead of freeing - Prevents use-after-free when TLS/remote/freelist hold stale pointers 3. TLS SLL Next Pointer Validation (core/box/tls_sll_box.h) - Detect invalid next pointer during traversal - Log [TLS_SLL_NEXT_INVALID] when detected - Drop list to prevent corruption propagation 4. Unified Cache Freelist Validation (core/front/tiny_unified_cache.c) - Validate freelist head before use - Log [UNIFIED_FREELIST_INVALID] for corrupted lists - Defensive drop to prevent bad allocations 5. Early Refcount Decrement Fix (core/tiny_free_fast.inc.h) - Removed ss_active_dec_one from fast path - Prevents premature refcount depletion - Defers decrement to proper cleanup path Test Results: ✅ sh8bench completes successfully (exit code 0) ✅ No SIGSEGV or ABORT signals ✅ Short runs (5s) crash-free ⚠️ Multiple [TLS_SLL_NEXT_INVALID] / [UNIFIED_FREELIST_INVALID] logged ⚠️ Invalid pointers still present (stale references exist) Status Analysis: - Stability: ACHIEVED (no crashes) - Root Cause: NOT FULLY SOLVED (invalid pointers remain) - Approach: Defensive + refcount guards working well Remaining Issues: ❌ Why does SuperSlab get unregistered while TLS SLL holds pointers? ❌ SuperSlab lifecycle: remote_queue / adopt / LRU interactions? ❌ Stale pointers indicate improper SuperSlab lifetime management Performance Impact: - Refcount operations: +1-3 cycles per push/pop (minor) - Validation checks: +2-5 cycles (minor) - Overall: < 5% overhead estimated Next Investigation: - Trace SuperSlab lifecycle (allocation → registration → unregister → free) - Check remote_queue handling - Verify adopt/LRU mechanisms - Correlate stale pointer logs with SuperSlab unregister events Log Volume Warning: - May produce many diagnostic logs on long runs - Consider ENV gating for production Technical Notes: - Refcount is per-SuperSlab, not global - Guards prevent symptom propagation, not root cause - Root cause is in SuperSlab lifecycle management 🤖 Generated with Claude Code (https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
161 lines
6.6 KiB
C
161 lines
6.6 KiB
C
// tiny_alloc_fast_inline.h - Phase 7 Task 2: Aggressive inline TLS cache access
|
|
// Purpose: Eliminate function call overhead (5-10 cycles) in hot path
|
|
// Design: Macro-based inline expansion of TLS freelist operations
|
|
// Performance: Expected +10-15% (22M → 24-25M ops/s)
|
|
|
|
#ifndef TINY_ALLOC_FAST_INLINE_H
|
|
#define TINY_ALLOC_FAST_INLINE_H
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include "hakmem_build_flags.h"
|
|
#include "tiny_remote.h" // for TINY_REMOTE_SENTINEL (defense-in-depth)
|
|
#include "box/tiny_next_ptr_box.h" // Phase E1-CORRECT: unified next pointer API
|
|
#include "tiny_region_id.h" // For HEADER_MAGIC, HEADER_CLASS_MASK (Fix #7)
|
|
#include "box/tls_sll_box.h"
|
|
|
|
// External TLS variables (defined in hakmem_tiny.c)
|
|
// Phase 3d-B: TLS Cache Merge - Unified TLS SLL structure
|
|
extern __thread TinyTLSSLL g_tls_sll[TINY_NUM_CLASSES];
|
|
extern __thread const char* g_tls_sll_last_writer[TINY_NUM_CLASSES];
|
|
|
|
#ifndef TINY_NUM_CLASSES
|
|
#define TINY_NUM_CLASSES 8
|
|
#endif
|
|
|
|
// ========== Inline Macro: TLS Freelist Pop ==========
|
|
//
|
|
// Aggressive inline expansion of tiny_alloc_fast_pop()
|
|
// Saves: 5-10 cycles (function call overhead + register spilling)
|
|
//
|
|
// Assembly comparison (x86-64):
|
|
// Function call:
|
|
// push %rbx ; Save registers
|
|
// mov %edi, %ebx ; class_idx to %ebx
|
|
// call tiny_alloc_fast_pop ; Call (5-10 cycles overhead)
|
|
// pop %rbx ; Restore registers
|
|
// test %rax, %rax ; Check result
|
|
//
|
|
// Inline macro:
|
|
// mov g_tls_sll_head(%rdi), %rax ; Direct access (3-4 cycles)
|
|
// test %rax, %rax
|
|
// je .miss
|
|
// mov (%rax), %rdx
|
|
// mov %rdx, g_tls_sll_head(%rdi)
|
|
//
|
|
// Result: 5-10 fewer instructions, better register allocation
|
|
//
|
|
#define TINY_ALLOC_FAST_POP_INLINE(class_idx, ptr_out) do { \
|
|
extern int g_tls_sll_class_mask; \
|
|
if (__builtin_expect(((g_tls_sll_class_mask & (1u << (class_idx))) == 0), 0)) { \
|
|
(ptr_out) = NULL; \
|
|
break; \
|
|
} \
|
|
void* _head = g_tls_sll[(class_idx)].head; \
|
|
if (__builtin_expect(_head != NULL, 1)) { \
|
|
if (__builtin_expect((uintptr_t)_head == TINY_REMOTE_SENTINEL, 0)) { \
|
|
/* Break the chain defensively if sentinel leaked into TLS SLL */ \
|
|
tls_sll_set_head_raw((class_idx), NULL, "fast_pop_sentinel"); \
|
|
g_tls_sll_last_writer[(class_idx)] = "fast_pop_sentinel"; \
|
|
if (g_tls_sll[(class_idx)].count > 0) g_tls_sll[(class_idx)].count--; \
|
|
(ptr_out) = NULL; \
|
|
} else { \
|
|
/* Phase E1-CORRECT: Use Box API for next pointer read */ \
|
|
void* _next = tiny_next_read(class_idx, _head); \
|
|
if (__builtin_expect(class_idx == 4 || class_idx == 6, 0)) { \
|
|
tls_sll_diag_next(class_idx, _head, _next, "fast_pop_next"); \
|
|
} \
|
|
tls_sll_set_head_raw((class_idx), _next, "fast_pop"); \
|
|
if ((class_idx == 4 || class_idx == 6) && _next && ((uintptr_t)_next < 4096 || (uintptr_t)_next > 0x00007fffffffffffULL)) { \
|
|
static __thread uint8_t s_fast_pop_invalid_log[8] = {0}; \
|
|
if (s_fast_pop_invalid_log[(class_idx)] < 4) { \
|
|
fprintf(stderr, "[TLS_SLL_FAST_POP_INVALID] cls=%d head=%p next=%p\n", (class_idx), _head, _next); \
|
|
s_fast_pop_invalid_log[(class_idx)]++; \
|
|
} \
|
|
tls_sll_set_head_raw((class_idx), NULL, "fast_pop_post_invalid"); \
|
|
/* keep count unchanged to flag drop */ \
|
|
g_tls_sll_last_writer[(class_idx)] = "fast_pop_post_invalid"; \
|
|
(ptr_out) = NULL; \
|
|
} else { \
|
|
if (g_tls_sll[(class_idx)].count > 0) { \
|
|
g_tls_sll[(class_idx)].count--; \
|
|
} \
|
|
/* Phase 7: Fast path returns BASE pointer; HAK_RET_ALLOC does BASE→USER */ \
|
|
(ptr_out) = _head; \
|
|
} \
|
|
} \
|
|
} else { \
|
|
(ptr_out) = NULL; \
|
|
} \
|
|
} while(0)
|
|
|
|
// ========== Inline Macro: TLS Freelist Push ==========
|
|
//
|
|
// Aggressive inline expansion of tiny_alloc_fast_push()
|
|
// Saves: 5-10 cycles (function call overhead)
|
|
//
|
|
// Assembly comparison:
|
|
// Function call:
|
|
// mov %rdi, %rsi ; ptr to %rsi
|
|
// mov %ebx, %edi ; class_idx to %edi
|
|
// call tiny_alloc_fast_push ; Call (5-10 cycles)
|
|
//
|
|
// Inline macro:
|
|
// mov g_tls_sll_head(%rdi), %rax ; Direct inline (2-3 cycles)
|
|
// mov %rax, (%rsi)
|
|
// mov %rsi, g_tls_sll_head(%rdi)
|
|
//
|
|
#if HAKMEM_TINY_HEADER_CLASSIDX
|
|
// DESIGN RULE: "Header is written by BOTH Alloc and Free/Drain"
|
|
// FREE path: Restore header for Class 1-6, then write Next pointer
|
|
// ALLOC path: Write header before returning to user (HAK_RET_ALLOC)
|
|
// This ensures Free path can read header to determine class_idx
|
|
#define TINY_ALLOC_FAST_PUSH_INLINE(class_idx, ptr) do { \
|
|
extern int g_tls_sll_class_mask; \
|
|
if (__builtin_expect(((g_tls_sll_class_mask & (1u << (class_idx))) == 0), 0)) { \
|
|
break; \
|
|
} \
|
|
if (!(ptr)) break; \
|
|
/* Phase E1-CORRECT: API ptr is USER pointer (= base+1). Convert back to BASE. */ \
|
|
uint8_t* _base = (uint8_t*)(ptr) - 1; \
|
|
/* C0-C6: Restore header BEFORE writing Next. C7: skip (next overwrites header). */ \
|
|
if ((class_idx) != 7) { \
|
|
*_base = HEADER_MAGIC | ((class_idx) & HEADER_CLASS_MASK); \
|
|
} \
|
|
/* Link node using BASE as the canonical SLL node address. */ \
|
|
tiny_next_write((class_idx), _base, g_tls_sll[(class_idx)].head); \
|
|
tls_sll_set_head_raw((class_idx), _base, "fast_push"); \
|
|
g_tls_sll[(class_idx)].count++; \
|
|
} while(0)
|
|
#else
|
|
#define TINY_ALLOC_FAST_PUSH_INLINE(class_idx, ptr) do { \
|
|
tiny_next_write(class_idx, (ptr), g_tls_sll[(class_idx)].head); \
|
|
tls_sll_set_head_raw((class_idx), (ptr), "fast_push"); \
|
|
g_tls_sll[(class_idx)].count++; \
|
|
} while(0)
|
|
#endif
|
|
|
|
// ========== Performance Notes ==========
|
|
//
|
|
// Benchmark results (expected):
|
|
// - Random Mixed 128B: 21M → 23M ops/s (+10%)
|
|
// - Random Mixed 256B: 19M → 22M ops/s (+15%)
|
|
// - Larson 1T: 2.7M → 3.0M ops/s (+11%)
|
|
//
|
|
// Key optimizations:
|
|
// 1. No function call overhead (save 5-10 cycles)
|
|
// 2. Better register allocation (inline knows full context)
|
|
// 3. No stack frame setup/teardown
|
|
// 4. Compiler can optimize across macro boundaries
|
|
//
|
|
// Trade-offs:
|
|
// 1. Code size: +100-200 bytes (each call site expanded)
|
|
// 2. Debug visibility: Macros harder to step through
|
|
// 3. Maintenance: Changes must be kept in sync with function version
|
|
//
|
|
// Recommendation: Use inline macros for CRITICAL hot paths only
|
|
// (alloc/free fast path), keep functions for diagnostics/debugging
|
|
|
|
#endif // TINY_ALLOC_FAST_INLINE_H
|