IMPLEMENTATION: =============== Add dynamic boundary adjustment between Tiny and Mid allocators via HAKMEM_TINY_MAX_CLASS environment variable for performance tuning. Changes: -------- 1. hakmem_tiny.h/c: Add tiny_get_max_size() - reads ENV and maps class to max usable size (default: class 7 = 1023B, can reduce to class 5 = 255B) 2. hakmem_mid_mt.h/c: Add mid_get_min_size() - returns tiny_get_max_size() + 1 to ensure no size gap between allocators 3. hak_alloc_api.inc.h: Replace static TINY_MAX_SIZE with dynamic tiny_get_max_size() call in allocation routing logic 4. Size gap fix: Mid's range now dynamically adjusts based on Tiny's max (prevents 256-1023B from falling through when HAKMEM_TINY_MAX_CLASS=5) A/B BENCHMARK RESULTS: ====================== Config A (Default, C0-C7, Tiny up to 1023B): 128B: 6.34M ops/s | 256B: 6.34M ops/s 512B: 5.55M ops/s | 1024B: 5.91M ops/s Config B (Reduced, C0-C5, Tiny up to 255B): 128B: 1.38M ops/s (-78%) | 256B: 1.36M ops/s (-79%) 512B: 1.33M ops/s (-76%) | 1024B: 1.37M ops/s (-77%) FINDINGS: ========= ✅ Size gap fixed - no OOM crashes with HAKMEM_TINY_MAX_CLASS=5 ❌ Severe performance degradation (-76% to -79%) when reducing Tiny coverage ❌ Even 128B degraded (should still use Tiny) - possible class filtering issue ⚠️ Mid's coarse size classes (8KB/16KB/32KB) cause fragmentation for small sizes HYPOTHESIS: ----------- Mid allocator uses 8KB blocks for all 256-1024B allocations, causing: - Severe internal fragmentation (1024B request → 8KB block = 87% waste) - Poor cache utilization - Consistent ~1.3M ops/s across all sizes (same 8KB class) RECOMMENDATION: =============== **Keep default HAKMEM_TINY_MAX_CLASS=7 (C0-C7, up to 1023B)** Reducing Tiny coverage is COUNTERPRODUCTIVE with current Mid allocator design. To make this viable, Mid would need finer size classes for 256B-8KB range. ENV USAGE (for future experimentation): ---------------------------------------- export HAKMEM_TINY_MAX_CLASS=7 # Default (C0-C7, up to 1023B) export HAKMEM_TINY_MAX_CLASS=5 # Reduced (C0-C5, up to 255B) - NOT recommended 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
564 lines
17 KiB
C
564 lines
17 KiB
C
/**
|
|
* hakmem_mid_mt.c
|
|
*
|
|
* Mid Range Multi-threaded Allocator Implementation (8-32KB)
|
|
* mimalloc-style per-thread segment for optimal MT performance
|
|
*
|
|
* Design:
|
|
* - Per-thread segments (TLS) for lock-free allocation
|
|
* - Global registry for segment lookup during free()
|
|
* - 64KB chunks with bump + free list allocation
|
|
* - Phase 1: Local free only (remote free = memory leak, acceptable for benchmarking)
|
|
* - Phase 2: Will add atomic remote free list
|
|
*/
|
|
|
|
#include "hakmem_mid_mt.h"
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <unistd.h>
|
|
#include <assert.h>
|
|
#include <stdatomic.h>
|
|
|
|
// Use likely/unlikely hints for branch prediction
|
|
#ifndef likely
|
|
#define likely(x) __builtin_expect(!!(x), 1)
|
|
#endif
|
|
#ifndef unlikely
|
|
#define unlikely(x) __builtin_expect(!!(x), 0)
|
|
#endif
|
|
|
|
// ============================================================================
|
|
// Global and TLS Variables
|
|
// ============================================================================
|
|
|
|
// TLS: Each thread has independent segments (lock-free!)
|
|
__thread MidThreadSegment g_mid_segments[MID_NUM_CLASSES] = {0};
|
|
|
|
// Global registry (protected by lock)
|
|
MidGlobalRegistry g_mid_registry = {
|
|
.entries = NULL,
|
|
.count = 0,
|
|
.capacity = 0,
|
|
.lock = PTHREAD_MUTEX_INITIALIZER
|
|
};
|
|
|
|
// Statistics (if enabled)
|
|
#if MID_ENABLE_STATS
|
|
MidStats g_mid_stats = {0};
|
|
#endif
|
|
|
|
// Initialization flag
|
|
static volatile int g_mid_initialized = 0;
|
|
static pthread_mutex_t g_init_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
// ============================================================================
|
|
// Forward Declarations
|
|
// ============================================================================
|
|
|
|
static bool segment_refill(MidThreadSegment* seg, int class_idx);
|
|
static void* segment_alloc(MidThreadSegment* seg, int class_idx);
|
|
static void segment_free_local(MidThreadSegment* seg, void* ptr);
|
|
static void* chunk_allocate(size_t chunk_size);
|
|
static void chunk_deallocate(void* chunk, size_t chunk_size);
|
|
static void registry_add(void* base, size_t block_size, int class_idx);
|
|
bool mid_registry_lookup(void* ptr, size_t* out_block_size, int* out_class_idx); // Public for hak_free_at()
|
|
static void registry_remove(void* base);
|
|
|
|
// ============================================================================
|
|
// Registry Operations (Protected by Lock)
|
|
// ============================================================================
|
|
|
|
/**
|
|
* registry_add - Add a new segment to global registry
|
|
*
|
|
* Called during segment refill (rare, ~0.1% of allocations)
|
|
*/
|
|
static void registry_add(void* base, size_t block_size, int class_idx) {
|
|
pthread_mutex_lock(&g_mid_registry.lock);
|
|
|
|
// Grow registry if needed
|
|
if (g_mid_registry.count >= g_mid_registry.capacity) {
|
|
uint32_t new_capacity = g_mid_registry.capacity == 0
|
|
? MID_REGISTRY_INITIAL_CAPACITY
|
|
: g_mid_registry.capacity * 2;
|
|
|
|
// CRITICAL: Use mmap() instead of realloc() to avoid deadlock!
|
|
// realloc() would go through hakmem → mid_mt → registry_add → deadlock
|
|
size_t new_size = new_capacity * sizeof(MidSegmentRegistry);
|
|
MidSegmentRegistry* new_entries = mmap(
|
|
NULL, new_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1, 0
|
|
);
|
|
|
|
if (new_entries == MAP_FAILED) {
|
|
new_entries = NULL;
|
|
} else if (g_mid_registry.entries) {
|
|
// Copy old entries
|
|
memcpy(new_entries, g_mid_registry.entries,
|
|
g_mid_registry.count * sizeof(MidSegmentRegistry));
|
|
// Don't unmap old entries (lazy cleanup, avoids complexity)
|
|
}
|
|
|
|
if (!new_entries) {
|
|
pthread_mutex_unlock(&g_mid_registry.lock);
|
|
MID_LOG("ERROR: Registry realloc failed");
|
|
return;
|
|
}
|
|
|
|
g_mid_registry.entries = new_entries;
|
|
g_mid_registry.capacity = new_capacity;
|
|
}
|
|
|
|
// Add new entry
|
|
MidSegmentRegistry* entry = &g_mid_registry.entries[g_mid_registry.count];
|
|
entry->base = base;
|
|
entry->block_size = block_size;
|
|
entry->class_idx = class_idx;
|
|
g_mid_registry.count++;
|
|
|
|
// Keep entries sorted by base address (for binary search)
|
|
// Simple insertion: swap with previous until in order
|
|
for (uint32_t i = g_mid_registry.count - 1; i > 0; i--) {
|
|
if (g_mid_registry.entries[i].base >= g_mid_registry.entries[i - 1].base) {
|
|
break;
|
|
}
|
|
// Swap
|
|
MidSegmentRegistry tmp = g_mid_registry.entries[i];
|
|
g_mid_registry.entries[i] = g_mid_registry.entries[i - 1];
|
|
g_mid_registry.entries[i - 1] = tmp;
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_mid_registry.lock);
|
|
|
|
MID_LOG("Registry add: base=%p, block_size=%zu, class=%d, count=%u",
|
|
base, block_size, class_idx, g_mid_registry.count);
|
|
}
|
|
|
|
/**
|
|
* mid_registry_lookup - Find segment containing ptr via binary search
|
|
*
|
|
* Called during free() when ptr is not in current segment (uncommon)
|
|
*
|
|
* @return true if found, false otherwise
|
|
*/
|
|
bool mid_registry_lookup(void* ptr, size_t* out_block_size, int* out_class_idx) {
|
|
pthread_mutex_lock(&g_mid_registry.lock);
|
|
|
|
#if MID_ENABLE_STATS
|
|
__sync_fetch_and_add(&g_mid_stats.registry_lookups, 1);
|
|
#endif
|
|
|
|
// Binary search for segment containing ptr
|
|
int left = 0;
|
|
int right = (int)g_mid_registry.count - 1;
|
|
bool found = false;
|
|
|
|
while (left <= right) {
|
|
int mid = left + (right - left) / 2;
|
|
MidSegmentRegistry* entry = &g_mid_registry.entries[mid];
|
|
|
|
void* seg_end = (uint8_t*)entry->base + MID_CHUNK_SIZE;
|
|
|
|
if (ptr < entry->base) {
|
|
right = mid - 1;
|
|
} else if (ptr >= seg_end) {
|
|
left = mid + 1;
|
|
} else {
|
|
// Found!
|
|
*out_block_size = entry->block_size;
|
|
*out_class_idx = entry->class_idx;
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_mid_registry.lock);
|
|
|
|
return found;
|
|
}
|
|
|
|
/**
|
|
* registry_remove - Remove segment from registry
|
|
*
|
|
* Called when segment is completely freed (rare)
|
|
*/
|
|
static void registry_remove(void* base) {
|
|
pthread_mutex_lock(&g_mid_registry.lock);
|
|
|
|
// Find entry with matching base
|
|
for (uint32_t i = 0; i < g_mid_registry.count; i++) {
|
|
if (g_mid_registry.entries[i].base == base) {
|
|
// Remove by shifting remaining entries
|
|
for (uint32_t j = i; j < g_mid_registry.count - 1; j++) {
|
|
g_mid_registry.entries[j] = g_mid_registry.entries[j + 1];
|
|
}
|
|
g_mid_registry.count--;
|
|
pthread_mutex_unlock(&g_mid_registry.lock);
|
|
|
|
MID_LOG("Registry remove: base=%p, count=%u", base, g_mid_registry.count);
|
|
return;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_mid_registry.lock);
|
|
}
|
|
|
|
// ============================================================================
|
|
// Chunk Management (mmap/munmap wrappers)
|
|
// ============================================================================
|
|
|
|
/**
|
|
* chunk_allocate - Allocate a new chunk via mmap
|
|
*
|
|
* @param chunk_size Size of chunk (typically 64KB)
|
|
* @return Chunk base address, or NULL on failure
|
|
*/
|
|
static void* chunk_allocate(size_t chunk_size) {
|
|
void* chunk = mmap(
|
|
NULL,
|
|
chunk_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1,
|
|
0
|
|
);
|
|
|
|
if (chunk == MAP_FAILED) {
|
|
MID_LOG("ERROR: mmap failed for chunk_size=%zu", chunk_size);
|
|
return NULL;
|
|
}
|
|
|
|
MID_LOG("Chunk allocated: %p, size=%zu", chunk, chunk_size);
|
|
return chunk;
|
|
}
|
|
|
|
/**
|
|
* chunk_deallocate - Free chunk via munmap
|
|
*
|
|
* @param chunk Chunk base address
|
|
* @param chunk_size Size of chunk
|
|
*/
|
|
static void chunk_deallocate(void* chunk, size_t chunk_size) {
|
|
if (!chunk) return;
|
|
|
|
int ret = munmap(chunk, chunk_size);
|
|
if (ret != 0) {
|
|
MID_LOG("ERROR: munmap failed for chunk=%p, size=%zu", chunk, chunk_size);
|
|
} else {
|
|
MID_LOG("Chunk deallocated: %p, size=%zu", chunk, chunk_size);
|
|
}
|
|
}
|
|
|
|
// ============================================================================
|
|
// Segment Operations
|
|
// ============================================================================
|
|
|
|
/**
|
|
* segment_refill - Allocate new chunk and setup segment
|
|
*
|
|
* Called when segment is exhausted (rare, ~0.1% of allocations)
|
|
*
|
|
* @return true on success, false on OOM
|
|
*/
|
|
static bool segment_refill(MidThreadSegment* seg, int class_idx) {
|
|
size_t block_size = mid_class_to_size(class_idx);
|
|
size_t chunk_size = MID_CHUNK_SIZE;
|
|
|
|
// Allocate new chunk via mmap
|
|
void* chunk = chunk_allocate(chunk_size);
|
|
if (!chunk) {
|
|
return false;
|
|
}
|
|
|
|
// Register chunk in global registry (for free() lookup)
|
|
registry_add(chunk, block_size, class_idx);
|
|
|
|
// Setup segment
|
|
seg->chunk_base = chunk;
|
|
seg->chunk_size = chunk_size;
|
|
seg->block_size = block_size;
|
|
seg->current = chunk;
|
|
seg->end = (uint8_t*)chunk + chunk_size;
|
|
seg->capacity = chunk_size / block_size;
|
|
seg->refill_count++;
|
|
|
|
MID_LOG("Segment refill: class=%d, block_size=%zu, capacity=%u, chunk=%p",
|
|
class_idx, block_size, seg->capacity, chunk);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* segment_alloc - Allocate from segment (fast path)
|
|
*
|
|
* PERFORMANCE: Force inline for maximum speed
|
|
*
|
|
* Fast path priority:
|
|
* 1. Free list (most common, ~90-95% hit rate)
|
|
* 2. Bump allocation (when free list empty)
|
|
* 3. Refill (when segment exhausted)
|
|
*
|
|
* @return Allocated pointer, or NULL on OOM
|
|
*/
|
|
static inline void* segment_alloc(MidThreadSegment* seg, int class_idx) __attribute__((always_inline));
|
|
static inline void* segment_alloc(MidThreadSegment* seg, int class_idx) {
|
|
void* p;
|
|
|
|
// === Path 0: First allocation - need refill ===
|
|
// CRITICAL FIX: TLS is zero-initialized, so chunk_base == NULL on first call
|
|
if (unlikely(seg->chunk_base == NULL)) {
|
|
if (!segment_refill(seg, class_idx)) {
|
|
return NULL; // OOM
|
|
}
|
|
// Fall through to bump allocation after refill
|
|
}
|
|
|
|
// === Path 1: Free list (fastest, ~4-5 instructions) ===
|
|
p = seg->free_list;
|
|
if (likely(p != NULL)) {
|
|
seg->free_list = *(void**)p; // Pop from free list
|
|
seg->used_count++;
|
|
seg->alloc_count++;
|
|
return p;
|
|
}
|
|
|
|
// === Path 2: Bump allocation (fast, ~6-8 instructions) ===
|
|
p = seg->current;
|
|
void* next = (uint8_t*)p + seg->block_size;
|
|
|
|
if (likely(next <= seg->end)) {
|
|
seg->current = next;
|
|
seg->used_count++;
|
|
seg->alloc_count++;
|
|
return p;
|
|
}
|
|
|
|
// === Path 3: Refill (slow, called ~once per 64KB) ===
|
|
if (!segment_refill(seg, class_idx)) {
|
|
return NULL; // OOM
|
|
}
|
|
|
|
// Retry after refill
|
|
p = seg->current;
|
|
seg->current = (uint8_t*)p + seg->block_size;
|
|
seg->used_count++;
|
|
seg->alloc_count++;
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* segment_free_local - Free to local segment (same thread)
|
|
*
|
|
* @param seg Segment to free to
|
|
* @param ptr Pointer to free
|
|
*/
|
|
static inline void segment_free_local(MidThreadSegment* seg, void* ptr) {
|
|
// Push to free list (lock-free, local operation)
|
|
*(void**)ptr = seg->free_list;
|
|
seg->free_list = ptr;
|
|
seg->used_count--;
|
|
seg->free_count++;
|
|
|
|
#if MID_ENABLE_STATS
|
|
__sync_fetch_and_add(&g_mid_stats.local_frees, 1);
|
|
#endif
|
|
}
|
|
|
|
// ============================================================================
|
|
// Public API
|
|
// ============================================================================
|
|
|
|
/**
|
|
* mid_mt_init - Initialize Mid Range MT allocator
|
|
*
|
|
* Thread-safe, idempotent
|
|
*/
|
|
void mid_mt_init(void) {
|
|
if (g_mid_initialized) return;
|
|
|
|
pthread_mutex_lock(&g_init_lock);
|
|
|
|
if (!g_mid_initialized) {
|
|
// Initialize registry
|
|
g_mid_registry.entries = NULL;
|
|
g_mid_registry.count = 0;
|
|
g_mid_registry.capacity = 0;
|
|
pthread_mutex_init(&g_mid_registry.lock, NULL);
|
|
|
|
#if MID_ENABLE_STATS
|
|
memset(&g_mid_stats, 0, sizeof(g_mid_stats));
|
|
#endif
|
|
|
|
g_mid_initialized = 1;
|
|
|
|
MID_LOG("Mid MT allocator initialized");
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_init_lock);
|
|
}
|
|
|
|
/**
|
|
* mid_mt_alloc - Allocate memory from Mid Range pool (8-32KB)
|
|
*
|
|
* Thread-safe, lock-free (uses TLS)
|
|
*/
|
|
void* mid_mt_alloc(size_t size) {
|
|
// Validate size range (Phase 16: dynamic min size based on Tiny's max)
|
|
if (unlikely(size < mid_get_min_size() || size > MID_MAX_SIZE)) {
|
|
return NULL;
|
|
}
|
|
|
|
// Initialize if needed (thread-safe)
|
|
if (unlikely(!g_mid_initialized)) {
|
|
mid_mt_init();
|
|
}
|
|
|
|
// Get size class
|
|
int class_idx = mid_size_to_class(size);
|
|
if (unlikely(class_idx < 0)) {
|
|
return NULL;
|
|
}
|
|
|
|
// Get thread-local segment
|
|
MidThreadSegment* seg = &g_mid_segments[class_idx];
|
|
|
|
// Allocate from segment (fast path)
|
|
void* p = segment_alloc(seg, class_idx);
|
|
|
|
#if MID_ENABLE_STATS
|
|
if (p) {
|
|
__sync_fetch_and_add(&g_mid_stats.total_allocs, 1);
|
|
}
|
|
#endif
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* mid_mt_free - Free memory allocated by mid_mt_alloc
|
|
*
|
|
* Phase 1 implementation:
|
|
* - Local free (same thread): Fast, lock-free
|
|
* - Remote free (cross-thread): NOT IMPLEMENTED (memory leak)
|
|
*
|
|
* Phase 2 will add atomic remote free list per segment
|
|
*/
|
|
void mid_mt_free(void* ptr, size_t size) {
|
|
if (unlikely(!ptr)) return;
|
|
|
|
#if MID_ENABLE_STATS
|
|
__sync_fetch_and_add(&g_mid_stats.total_frees, 1);
|
|
#endif
|
|
|
|
// Get size class
|
|
int class_idx = mid_size_to_class(size);
|
|
if (unlikely(class_idx < 0)) {
|
|
MID_LOG("ERROR: Invalid size %zu in free", size);
|
|
return;
|
|
}
|
|
|
|
// Get thread-local segment
|
|
MidThreadSegment* seg = &g_mid_segments[class_idx];
|
|
|
|
// === Fast path: Check if ptr belongs to current segment ===
|
|
if (likely(seg->chunk_base != NULL &&
|
|
ptr >= seg->chunk_base &&
|
|
ptr < seg->end)) {
|
|
// Local free (same thread, lock-free)
|
|
segment_free_local(seg, ptr);
|
|
return;
|
|
}
|
|
|
|
// === Slow path: Remote free (cross-thread) ===
|
|
// Phase 1: NOT IMPLEMENTED
|
|
// We need to find the owning segment via registry,
|
|
// then push to that segment's remote free list.
|
|
//
|
|
// For Phase 1 (benchmarking), we accept this memory leak.
|
|
// bench_mid_large_mt uses independent working sets per thread,
|
|
// so remote frees are rare.
|
|
|
|
size_t block_size;
|
|
int owner_class;
|
|
|
|
if (mid_registry_lookup(ptr, &block_size, &owner_class)) {
|
|
// Found in registry, but we can't free it yet (no remote free list)
|
|
MID_LOG("WARNING: Remote free not implemented, leaking %p (size=%zu)", ptr, size);
|
|
|
|
#if MID_ENABLE_STATS
|
|
__sync_fetch_and_add(&g_mid_stats.remote_frees, 1);
|
|
#endif
|
|
|
|
// TODO Phase 2: Implement remote free
|
|
// segment_free_remote(ptr, block_size, owner_class);
|
|
} else {
|
|
// Not found in registry - might be from a different allocator
|
|
MID_LOG("ERROR: Pointer %p not found in registry (size=%zu)", ptr, size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mid_mt_thread_exit - Cleanup thread-local segments
|
|
*
|
|
* Called on thread exit to release resources
|
|
*/
|
|
void mid_mt_thread_exit(void) {
|
|
MID_LOG("Thread exit cleanup");
|
|
|
|
// Free all chunks from this thread's segments
|
|
for (int class_idx = 0; class_idx < MID_NUM_CLASSES; class_idx++) {
|
|
MidThreadSegment* seg = &g_mid_segments[class_idx];
|
|
|
|
if (seg->chunk_base) {
|
|
// Remove from registry
|
|
registry_remove(seg->chunk_base);
|
|
|
|
// Deallocate chunk
|
|
chunk_deallocate(seg->chunk_base, seg->chunk_size);
|
|
|
|
// Clear segment
|
|
memset(seg, 0, sizeof(MidThreadSegment));
|
|
}
|
|
}
|
|
}
|
|
|
|
// ============================================================================
|
|
// Statistics (Debug/Profiling)
|
|
// ============================================================================
|
|
|
|
#if MID_ENABLE_STATS
|
|
|
|
void mid_mt_print_stats(void) {
|
|
printf("\n=== Mid Range MT Statistics ===\n");
|
|
printf("Total allocations: %lu\n", g_mid_stats.total_allocs);
|
|
printf("Total frees: %lu\n", g_mid_stats.total_frees);
|
|
printf("Local frees: %lu (%.1f%%)\n",
|
|
g_mid_stats.local_frees,
|
|
100.0 * g_mid_stats.local_frees / (g_mid_stats.total_frees + 1));
|
|
printf("Remote frees: %lu (%.1f%%)\n",
|
|
g_mid_stats.remote_frees,
|
|
100.0 * g_mid_stats.remote_frees / (g_mid_stats.total_frees + 1));
|
|
printf("Registry lookups: %lu\n", g_mid_stats.registry_lookups);
|
|
printf("\n");
|
|
|
|
// Per-segment stats
|
|
for (int class_idx = 0; class_idx < MID_NUM_CLASSES; class_idx++) {
|
|
MidThreadSegment* seg = &g_mid_segments[class_idx];
|
|
if (seg->alloc_count > 0) {
|
|
printf("Class %d (%zu bytes):\n", class_idx, mid_class_to_size(class_idx));
|
|
printf(" Allocations: %lu\n", seg->alloc_count);
|
|
printf(" Frees: %lu\n", seg->free_count);
|
|
printf(" Refills: %u\n", seg->refill_count);
|
|
printf(" Used count: %u / %u\n", seg->used_count, seg->capacity);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
#endif // MID_ENABLE_STATS
|