Files
hakmem/core/hakmem_super_registry.c
Moe Charm (CI) acc64f2438 Phase ML1: Pool v1 memset 89.73% overhead 軽量化 (+15.34% improvement)
## Summary
- ChatGPT により bench_profile.h の setenv segfault を修正(RTLD_NEXT 経由に切り替え)
- core/box/pool_zero_mode_box.h 新設:ENV キャッシュ経由で ZERO_MODE を統一管理
- core/hakmem_pool.c で zero mode に応じた memset 制御(FULL/header/off)
- A/B テスト結果:ZERO_MODE=header で +15.34% improvement(1M iterations, C6-heavy)

## Files Modified
- core/box/pool_api.inc.h: pool_zero_mode_box.h include
- core/bench_profile.h: glibc setenv → malloc+putenv(segfault 回避)
- core/hakmem_pool.c: zero mode 参照・制御ロジック
- core/box/pool_zero_mode_box.h (新設): enum/getter
- CURRENT_TASK.md: Phase ML1 結果記載

## Test Results
| Iterations | ZERO_MODE=full | ZERO_MODE=header | Improvement |
|-----------|----------------|-----------------|------------|
| 10K       | 3.06 M ops/s   | 3.17 M ops/s    | +3.65%     |
| 1M        | 23.71 M ops/s  | 27.34 M ops/s   | **+15.34%** |

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Haiku 4.5 <noreply@anthropic.com>
2025-12-10 09:08:18 +09:00

857 lines
28 KiB
C

#include "hakmem_super_registry.h"
#include "hakmem_tiny_superslab.h"
#include "box/ss_allocation_box.h" // For superslab_allocate() declaration
#include "box/ss_addr_map_box.h" // Phase 9-1: SuperSlab address map
#include "box/ss_cold_start_box.inc.h" // Phase 11+: Cold Start prewarm defaults
#include "hakmem_env_cache.h" // Priority-2: ENV cache (eliminate syscalls)
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/mman.h> // munmap for incompatible SuperSlab eviction
// Global registry storage (allocated via SuperRegBox)
static SuperRegEntry* reg_entries(void) {
return super_reg_entries();
}
pthread_mutex_t g_super_reg_lock = PTHREAD_MUTEX_INITIALIZER;
int g_super_reg_initialized = 0;
// Per-class registry storage (Phase 6: Registry Optimization)
int g_super_reg_class_size[TINY_NUM_CLASSES];
// Phase 9: Lazy Deallocation - LRU Cache Storage
SuperSlabLRUCache g_ss_lru_cache = {0};
static int g_ss_lru_initialized = 0;
// Phase 11: Prewarm bypass flag (disable LRU pop during prewarm)
static _Atomic int g_ss_prewarm_bypass = 0;
// Initialize registry (call once at startup)
void hak_super_registry_init(void) {
if (g_super_reg_initialized) return;
super_reg_init(NULL, NULL);
SuperRegEntry* entries = reg_entries();
int reg_cap = super_reg_effective_size();
if (!entries) {
fprintf(stderr, "[SUPER_REG] init failed: no registry entries\n");
abort();
}
// Zero-initialize all entries (hash table)
memset(entries, 0, (size_t)reg_cap * sizeof(SuperRegEntry));
// Zero-initialize per-class registry (Phase 6: Registry Optimization)
SuperSlab** by_class = super_reg_by_class_slots();
int stride = super_reg_by_class_stride();
if (by_class && stride > 0) {
memset(by_class, 0, (size_t)TINY_NUM_CLASSES * (size_t)stride * sizeof(SuperSlab*));
}
memset(g_super_reg_class_size, 0, sizeof(g_super_reg_class_size));
// Memory fence to ensure initialization is visible to all threads
atomic_thread_fence(memory_order_release);
g_super_reg_initialized = 1;
}
// Register SuperSlab (mutex-protected)
// CRITICAL: Call AFTER SuperSlab is fully initialized
// Publish order: ss init → release fence → base write
// Phase 8.3: ACE - lg_size aware registration
// Phase 6: Registry Optimization - Also add to per-class registry for fast refill scan
int hak_super_register(uintptr_t base, SuperSlab* ss) {
if (!g_super_reg_initialized) {
hak_super_registry_init();
}
pthread_mutex_lock(&g_super_reg_lock);
int lg = ss->lg_size; // Phase 8.3: Get lg_size from SuperSlab
// Priority-2: Use cached ENV (eliminate debug syscall overhead)
#if !HAKMEM_BUILD_RELEASE
int dbg = HAK_ENV_SUPER_REG_DEBUG();
#else
const int dbg = 0;
#endif
SuperRegEntry* entries = reg_entries();
if (!entries) {
pthread_mutex_unlock(&g_super_reg_lock);
return 0;
}
int h = hak_super_hash(base, lg);
const int mask = super_reg_effective_mask();
const int probe_limit = super_reg_effective_size() > SUPER_MAX_PROBE
? SUPER_MAX_PROBE
: super_reg_effective_size();
// Step 1: Register in hash table (for address → SuperSlab lookup)
int hash_registered = 0;
for (int i = 0; i < probe_limit; i++) {
SuperRegEntry* e = &entries[(h + i) & mask];
if (atomic_load_explicit(&e->base, memory_order_acquire) == 0) {
// Found empty slot
// Step 1: Write SuperSlab pointer and lg_size (atomic for MT-safety)
atomic_store_explicit(&e->ss, ss, memory_order_release);
e->lg_size = lg; // Phase 8.3: Store lg_size for fast lookup
// Step 2: Release fence (ensures ss/lg_size write is visible before base)
atomic_thread_fence(memory_order_release);
// Step 3: Publish base address (makes entry visible to readers)
atomic_store_explicit(&e->base, base, memory_order_release);
hash_registered = 1;
if (dbg == 1) {
fprintf(stderr, "[SUPER_REG] register base=%p lg=%d slot=%d magic=%llx\n",
(void*)base, lg, (h + i) & mask,
(unsigned long long)ss->magic);
}
break;
}
if (atomic_load_explicit(&e->base, memory_order_acquire) == base && e->lg_size == lg) {
// Already registered (duplicate registration)
hash_registered = 1;
break;
}
}
if (!hash_registered) {
// Hash table full (probing limit reached)
pthread_mutex_unlock(&g_super_reg_lock);
fprintf(stderr, "HAKMEM: SuperSlab registry full! Increase SUPER_REG_SIZE\n");
return 0;
}
// Phase 12: per-class registry not keyed by ss->size_class anymore.
// Keep existing global hash registration only.
// Phase 9-1: Also register in new hash table (for optimized lookup)
ss_map_insert(&g_ss_addr_map, (void*)base, ss);
pthread_mutex_unlock(&g_super_reg_lock);
return 1;
}
// Unregister SuperSlab (mutex-protected)
// CRITICAL: Call BEFORE munmap to prevent reader segfault
// Unpublish order: base = 0 (release) → munmap outside this function
// Phase 8.3: ACE - Try both lg_sizes (we don't know which one was used)
// Phase 6: Registry Optimization - Also remove from per-class registry
void hak_super_unregister(uintptr_t base) {
#if !HAKMEM_BUILD_RELEASE
static int dbg_once = -1; // shared with register path for debug toggle
#else
static const int dbg_once = 0;
#endif
(void)dbg_once;
if (!g_super_reg_initialized) return;
pthread_mutex_lock(&g_super_reg_lock);
// Step 1: Find and remove from hash table
SuperSlab* ss = NULL; // Save SuperSlab pointer for per-class removal
SuperRegEntry* entries = reg_entries();
if (!entries) {
pthread_mutex_unlock(&g_super_reg_lock);
return;
}
for (int lg = 20; lg <= 21; lg++) {
int h = hak_super_hash(base, lg);
const int mask = super_reg_effective_mask();
const int probe_limit = super_reg_effective_size() > SUPER_MAX_PROBE
? SUPER_MAX_PROBE
: super_reg_effective_size();
// Linear probing to find matching entry
for (int i = 0; i < probe_limit; i++) {
SuperRegEntry* e = &entries[(h + i) & mask];
if (atomic_load_explicit(&e->base, memory_order_acquire) == base && e->lg_size == lg) {
// Found entry to remove
// Save SuperSlab pointer BEFORE clearing (for per-class removal)
ss = atomic_load_explicit(&e->ss, memory_order_acquire);
// Step 1: Clear SuperSlab pointer (atomic, prevents TOCTOU race)
atomic_store_explicit(&e->ss, NULL, memory_order_release);
// Step 2: Unpublish base (makes entry invisible to readers)
atomic_store_explicit(&e->base, 0, memory_order_release);
// Step 3: Clear lg_size (optional cleanup)
e->lg_size = 0;
#if !HAKMEM_BUILD_RELEASE
// Priority-2: Use cached ENV (eliminate lazy-init overhead)
if (__builtin_expect(dbg_once == -1, 0)) {
dbg_once = HAK_ENV_SUPER_REG_DEBUG();
}
if (dbg_once == 1) {
fprintf(stderr, "[SUPER_REG] unregister base=%p\n", (void*)base);
}
#endif
// Found in hash table, continue to per-class removal
goto hash_removed;
}
if (atomic_load_explicit(&e->base, memory_order_acquire) == 0) {
// Not found in this lg_size, try next
break;
}
}
}
hash_removed:
// Step 2: Remove from per-class registry (Phase 6: Registry Optimization)
if (ss && ss->magic == SUPERSLAB_MAGIC) {
// Phase 12: per-class registry no longer keyed; no per-class removal required.
}
// Phase 9-1: Also remove from new hash table
ss_map_remove(&g_ss_addr_map, (void*)base);
pthread_mutex_unlock(&g_super_reg_lock);
// Not found is not an error (could be duplicate unregister)
}
// ============================================================================
// Phase 9: Lazy Deallocation - LRU Cache Implementation
// ============================================================================
// hak_now_ns() is defined in superslab/superslab_inline.h - use that
#include <sys/mman.h> // For munmap
// Initialize LRU cache (called once at startup)
void hak_ss_lru_init(void) {
if (g_ss_lru_initialized) return;
pthread_mutex_lock(&g_super_reg_lock);
if (g_ss_lru_initialized) {
pthread_mutex_unlock(&g_super_reg_lock);
return;
}
// Priority-2: Use cached ENV (eliminate config syscall overhead)
g_ss_lru_cache.max_cached = (uint32_t)HAK_ENV_SUPERSLAB_MAX_CACHED();
g_ss_lru_cache.max_memory_mb = (uint64_t)HAK_ENV_SUPERSLAB_MAX_MEMORY_MB();
uint32_t ttl_sec = (uint32_t)HAK_ENV_SUPERSLAB_TTL_SEC();
g_ss_lru_cache.ttl_ns = (uint64_t)ttl_sec * 1000000000ULL;
g_ss_lru_cache.lru_head = NULL;
g_ss_lru_cache.lru_tail = NULL;
g_ss_lru_cache.total_count = 0;
g_ss_lru_cache.total_memory_mb = 0;
g_ss_lru_cache.generation = 0;
g_ss_lru_initialized = 1;
pthread_mutex_unlock(&g_super_reg_lock);
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[SS_LRU_INIT] max_cached=%u max_memory_mb=%llu ttl_sec=%u\n",
g_ss_lru_cache.max_cached,
(unsigned long long)g_ss_lru_cache.max_memory_mb,
ttl_sec);
#endif
}
// Remove SuperSlab from LRU list (does NOT free memory)
static void ss_lru_remove(SuperSlab* ss) {
if (!ss) return;
if (ss->lru_prev) {
ss->lru_prev->lru_next = ss->lru_next;
} else {
g_ss_lru_cache.lru_head = ss->lru_next;
}
if (ss->lru_next) {
ss->lru_next->lru_prev = ss->lru_prev;
} else {
g_ss_lru_cache.lru_tail = ss->lru_prev;
}
ss->lru_prev = NULL;
ss->lru_next = NULL;
}
// Insert SuperSlab at head of LRU list (most recently used)
static void ss_lru_insert_head(SuperSlab* ss) {
if (!ss) return;
ss->lru_next = g_ss_lru_cache.lru_head;
ss->lru_prev = NULL;
if (g_ss_lru_cache.lru_head) {
g_ss_lru_cache.lru_head->lru_prev = ss;
} else {
g_ss_lru_cache.lru_tail = ss;
}
g_ss_lru_cache.lru_head = ss;
}
// Mark SuperSlab as recently used (move to head)
void hak_ss_lru_touch(SuperSlab* ss) {
if (!ss || !g_ss_lru_initialized) return;
pthread_mutex_lock(&g_super_reg_lock);
ss->last_used_ns = hak_now_ns();
// If already in list, remove and re-insert at head
if (ss->lru_prev || ss->lru_next || g_ss_lru_cache.lru_head == ss) {
ss_lru_remove(ss);
ss_lru_insert_head(ss);
}
pthread_mutex_unlock(&g_super_reg_lock);
}
// Evict one SuperSlab from tail (oldest)
// Returns: 1 if evicted, 0 if cache is empty
static int ss_lru_evict_one(void) {
// Priority-2: Use cached ENV (eliminate lazy-init static overhead)
#if !HAKMEM_BUILD_RELEASE
static int dbg = -1;
if (__builtin_expect(dbg == -1, 0)) {
dbg = HAK_ENV_SS_LRU_DEBUG();
}
#else
static const int dbg = 0;
#endif
SuperSlab* victim = g_ss_lru_cache.lru_tail;
if (!victim) return 0;
// Safety guard: if the tail SuperSlab is no longer registered in the
// global registry, its memory may already have been unmapped by another
// path. In that case, dereferencing victim (or its lru_prev/next) is
// unsafe. Treat this as a stale LRU entry and conservatively reset the
// cache to an empty state instead of evicting.
//
// NOTE: hak_super_lookup() only consults the registry / address map and
// never dereferences the SuperSlab pointer itself, so this check is safe
// even if victim has been munmapped.
if (hak_super_lookup((void*)victim) == NULL) {
#if !HAKMEM_BUILD_RELEASE
static int stale_log_count = 0;
if (stale_log_count < 4) {
fprintf(stderr,
"[SS_LRU_STALE_TAIL] victim=%p not in registry; resetting LRU cache\n",
(void*)victim);
stale_log_count++;
}
#endif
g_ss_lru_cache.lru_head = NULL;
g_ss_lru_cache.lru_tail = NULL;
g_ss_lru_cache.total_count = 0;
g_ss_lru_cache.total_memory_mb = 0;
return 0;
}
// Remove from LRU list
ss_lru_remove(victim);
g_ss_lru_cache.total_count--;
size_t ss_size = (size_t)1 << victim->lg_size;
g_ss_lru_cache.total_memory_mb -= (ss_size / (1024 * 1024));
// Unregister and free
uintptr_t base = (uintptr_t)victim;
(void)base;
// Debug logging for LRU EVICT
if (dbg == 1) {
fprintf(stderr, "[LRU_EVICT] ss=%p size=%zu KB (freed)\n",
(void*)victim, ss_size / 1024);
}
// Already unregistered when added to cache, just munmap
victim->magic = 0;
munmap(victim, ss_size);
#if !HAKMEM_BUILD_RELEASE
static int evict_log_count = 0;
if (evict_log_count < 10) {
fprintf(stderr, "[SS_LRU_EVICT] ss=%p size=%zu (cache_count=%u)\n",
victim, ss_size, g_ss_lru_cache.total_count);
evict_log_count++;
}
#endif
return 1;
}
// Evict old SuperSlabs based on policy
void hak_ss_lru_evict(void) {
if (!g_ss_lru_initialized) return;
pthread_mutex_lock(&g_super_reg_lock);
uint64_t now = hak_now_ns();
// Policy 1: Evict until count <= max_cached
while (g_ss_lru_cache.total_count > g_ss_lru_cache.max_cached) {
if (!ss_lru_evict_one()) break;
}
// Policy 2: Evict until memory <= max_memory_mb
while (g_ss_lru_cache.total_memory_mb > g_ss_lru_cache.max_memory_mb) {
if (!ss_lru_evict_one()) break;
}
// Policy 3: Evict expired SuperSlabs (TTL)
SuperSlab* curr = g_ss_lru_cache.lru_tail;
while (curr) {
SuperSlab* prev = curr->lru_prev;
uint64_t age = now - curr->last_used_ns;
if (age > g_ss_lru_cache.ttl_ns) {
ss_lru_remove(curr);
g_ss_lru_cache.total_count--;
size_t ss_size = (size_t)1 << curr->lg_size;
g_ss_lru_cache.total_memory_mb -= (ss_size / (1024 * 1024));
curr->magic = 0;
munmap(curr, ss_size);
}
curr = prev;
}
pthread_mutex_unlock(&g_super_reg_lock);
}
// Try to reuse a cached SuperSlab
SuperSlab* hak_ss_lru_pop(uint8_t size_class) {
if (!g_ss_lru_initialized) {
hak_ss_lru_init();
}
// Phase 11: Bypass LRU cache during prewarm
if (atomic_load_explicit(&g_ss_prewarm_bypass, memory_order_acquire)) {
return NULL;
}
// Priority-2: Use cached ENV (eliminate lazy-init TLS overhead)
#if !HAKMEM_BUILD_RELEASE
static __thread int dbg = -1;
if (__builtin_expect(dbg == -1, 0)) {
dbg = HAK_ENV_SS_LRU_DEBUG();
}
#else
static const int dbg = 0;
#endif
pthread_mutex_lock(&g_super_reg_lock);
// Find a compatible SuperSlab in cache (stride must match current config)
SuperSlab* curr = g_ss_lru_cache.lru_head;
extern const size_t g_tiny_class_sizes[];
size_t expected_stride = g_tiny_class_sizes[size_class];
while (curr) {
// Validate: Check if cached SuperSlab slabs match current stride
// This prevents reusing old 1024B SuperSlabs for new 2048B C7 allocations
int is_compatible = 1;
// Scan active slabs for stride mismatch
int cap = ss_slabs_capacity(curr);
for (int i = 0; i < cap; i++) {
if (curr->slab_bitmap & (1u << i)) {
TinySlabMeta* meta = &curr->slabs[i];
if (meta->capacity > 0) {
// Calculate implied stride from slab geometry
// Slab 0: 63488B usable, Others: 65536B usable
size_t slab_usable = (i == 0) ? 63488 : 65536;
size_t implied_stride = slab_usable / meta->capacity;
// Stride mismatch detected
if (implied_stride != expected_stride) {
is_compatible = 0;
#if !HAKMEM_BUILD_RELEASE
static _Atomic uint32_t g_incomp_log = 0;
uint32_t n = atomic_fetch_add(&g_incomp_log, 1);
if (n < 8) {
fprintf(stderr,
"[LRU_INCOMPATIBLE] class=%d ss=%p slab=%d expect_stride=%zu implied=%zu (evicting)\n",
size_class, (void*)curr, i, expected_stride, implied_stride);
}
#endif
break;
}
}
}
}
if (is_compatible) {
// Compatible - reuse this SuperSlab
ss_lru_remove(curr);
g_ss_lru_cache.total_count--;
size_t ss_size = (size_t)1 << curr->lg_size;
g_ss_lru_cache.total_memory_mb -= (ss_size / (1024 * 1024));
uint32_t cache_count_after = g_ss_lru_cache.total_count;
pthread_mutex_unlock(&g_super_reg_lock);
// Debug logging for LRU POP (hit)
if (dbg == 1) {
fprintf(stderr, "[LRU_POP] class=%d ss=%p (hit) (cache_size=%u/%u)\n",
size_class, (void*)curr, cache_count_after, g_ss_lru_cache.max_cached);
}
#if !HAKMEM_BUILD_RELEASE
static int pop_log_count = 0;
if (pop_log_count < 10) {
fprintf(stderr, "[SS_LRU_POP] Reusing ss=%p size=%zu (cache_count=%u)\n",
curr, ss_size, cache_count_after);
pop_log_count++;
}
#endif
// Re-initialize SuperSlab (magic, timestamps, etc.)
curr->magic = SUPERSLAB_MAGIC;
curr->last_used_ns = hak_now_ns();
curr->lru_prev = NULL;
curr->lru_next = NULL;
// ROOT CAUSE FIX: Re-register in global registry (idempotent)
// Without this, hak_super_lookup() fails in free() path
hak_super_register((uintptr_t)curr, curr);
return curr;
}
// Incompatible SuperSlab - evict immediately
SuperSlab* next = curr->lru_next;
ss_lru_remove(curr);
g_ss_lru_cache.total_count--;
size_t ss_size = (size_t)1 << curr->lg_size;
g_ss_lru_cache.total_memory_mb -= (ss_size / (1024 * 1024));
// Track evictions for observability
static _Atomic uint64_t g_incompatible_evictions = 0;
atomic_fetch_add(&g_incompatible_evictions, 1);
// Release memory
munmap(curr, ss_size);
curr = next;
}
uint32_t cache_count_miss = g_ss_lru_cache.total_count;
pthread_mutex_unlock(&g_super_reg_lock);
// Debug logging for LRU POP (miss)
if (dbg == 1) {
fprintf(stderr, "[LRU_POP] class=%d (miss) (cache_size=%u/%u)\n",
size_class, cache_count_miss, g_ss_lru_cache.max_cached);
}
return NULL; // No matching SuperSlab in cache
}
// Add SuperSlab to LRU cache
int hak_ss_lru_push(SuperSlab* ss) {
if (!ss || !g_ss_lru_initialized) {
hak_ss_lru_init();
}
// Priority-2: Use cached ENV (eliminate lazy-init TLS overhead)
#if !HAKMEM_BUILD_RELEASE
static __thread int dbg = -1;
if (__builtin_expect(dbg == -1, 0)) {
dbg = HAK_ENV_SS_LRU_DEBUG();
}
#else
static const int dbg = 0;
#endif
pthread_mutex_lock(&g_super_reg_lock);
// Check if we should cache or evict immediately
size_t ss_size = (size_t)1 << ss->lg_size;
uint64_t ss_mb = ss_size / (1024 * 1024);
// If adding this would exceed limits, evict first
while (g_ss_lru_cache.total_count >= g_ss_lru_cache.max_cached ||
g_ss_lru_cache.total_memory_mb + ss_mb > g_ss_lru_cache.max_memory_mb) {
if (!ss_lru_evict_one()) {
// Cache is empty but still can't fit - don't cache
pthread_mutex_unlock(&g_super_reg_lock);
return 0;
}
}
// Add to cache
ss->last_used_ns = hak_now_ns();
ss->generation = g_ss_lru_cache.generation++;
ss_lru_insert_head(ss);
g_ss_lru_cache.total_count++;
g_ss_lru_cache.total_memory_mb += ss_mb;
uint32_t cache_count_after = g_ss_lru_cache.total_count;
pthread_mutex_unlock(&g_super_reg_lock);
// Debug logging for LRU PUSH
if (dbg == 1) {
fprintf(stderr, "[LRU_PUSH] ss=%p size=%zu KB (cache_size=%u/%u)\n",
(void*)ss, ss_size / 1024, cache_count_after, g_ss_lru_cache.max_cached);
}
#if !HAKMEM_BUILD_RELEASE
static int push_log_count = 0;
if (push_log_count < 10) {
fprintf(stderr, "[SS_LRU_PUSH] Cached ss=%p size=%zu (cache_count=%u)\n",
ss, ss_size, cache_count_after);
push_log_count++;
}
#endif
return 1;
}
// ============================================================================
// Phase 11: SuperSlab Prewarm - Eliminate mmap/munmap bottleneck
// ============================================================================
// Prewarm specific size class with count SuperSlabs
void hak_ss_prewarm_class(int size_class, uint32_t count) {
if (size_class < 0 || size_class >= TINY_NUM_CLASSES) {
fprintf(stderr, "[SS_PREWARM] Invalid size_class=%d (valid: 0-%d)\n",
size_class, TINY_NUM_CLASSES - 1);
return;
}
// Priority-2: Use cached ENV (eliminate lazy-init static overhead)
#if !HAKMEM_BUILD_RELEASE
static int dbg = -1;
if (__builtin_expect(dbg == -1, 0)) {
dbg = HAK_ENV_SS_PREWARM_DEBUG();
}
#else
static const int dbg = 0;
#endif
// Ensure LRU cache is initialized
if (!g_ss_lru_initialized) {
hak_ss_lru_init();
}
// Phase 11+: Use static array to avoid malloc() during init (causes recursion)
// Cap at 512 as defined in SS_COLD_START_MAX_COUNT
#define SS_PREWARM_MAX_BATCH 512
static SuperSlab* slabs[SS_PREWARM_MAX_BATCH];
if (count > SS_PREWARM_MAX_BATCH) {
count = SS_PREWARM_MAX_BATCH;
}
// Enable prewarm bypass to prevent LRU cache from being used during allocation
atomic_store_explicit(&g_ss_prewarm_bypass, 1, memory_order_release);
uint32_t allocated = 0;
for (uint32_t i = 0; i < count; i++) {
// Allocate a SuperSlab for this class
SuperSlab* ss = superslab_allocate((uint8_t)size_class);
if (!ss) {
break; // Stop on OOM
}
slabs[allocated++] = ss;
}
// Disable prewarm bypass
atomic_store_explicit(&g_ss_prewarm_bypass, 0, memory_order_release);
// Now push all allocated SuperSlabs to LRU cache
uint32_t cached = 0;
for (uint32_t i = 0; i < allocated; i++) {
int pushed = hak_ss_lru_push(slabs[i]);
if (pushed) {
cached++;
} else {
// LRU cache full - free remaining SuperSlabs
for (uint32_t j = i; j < allocated; j++) {
superslab_free(slabs[j]);
}
break;
}
}
// Note: slabs is static array, no free() needed
// Debug logging for PREWARM
if (dbg == 1) {
fprintf(stderr, "[PREWARM] Class %d: allocated=%u cached=%u\n",
size_class, allocated, cached);
}
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[SS_PREWARM] Class %d: allocated=%u cached=%u\n",
size_class, allocated, cached);
#else
(void)cached; // Suppress unused warning
#endif
}
// Prewarm all classes (counts[i] = number of SuperSlabs for class i)
void hak_ss_prewarm_all(const uint32_t counts[TINY_NUM_CLASSES]) {
if (!counts) return;
for (int cls = 0; cls < TINY_NUM_CLASSES; cls++) {
if (counts[cls] > 0) {
hak_ss_prewarm_class(cls, counts[cls]);
}
}
}
// Prewarm: Allocate SuperSlabs at startup and add to LRU cache
// Phase 11+: Cold Start Box enables prewarm by default (1 SuperSlab/class)
void hak_ss_prewarm_init(void) {
// Priority-2: Use cached ENV (eliminate lazy-init static overhead)
#if !HAKMEM_BUILD_RELEASE
static int dbg = -1;
if (__builtin_expect(dbg == -1, 0)) {
dbg = HAK_ENV_SS_PREWARM_DEBUG();
}
#else
static const int dbg = 0;
#endif
// Phase 11+: Get default from Cold Start Box (enables prewarm by default)
// Can be disabled via HAKMEM_SS_PREWARM_DISABLE=1 or HAKMEM_SS_PREWARM_COUNT=0
int cold_start_count = ss_cold_start_get_count();
ss_cold_start_log_config(); // Log configuration for diagnostics
if (cold_start_count == 0) {
// Prewarm explicitly disabled
return;
}
// Priority-2: Use cached ENV (eliminate legacy config syscall overhead)
// Check for legacy ENV override (HAKMEM_PREWARM_SUPERSLABS)
// This takes precedence over Cold Start Box default
int env_val = HAK_ENV_PREWARM_SUPERSLABS();
long global = (env_val != 0) ? env_val : cold_start_count; // Default from Cold Start Box
if (env_val != 0) {
// Legacy ENV override active
global = env_val;
if (global == 0) {
// Legacy disable via HAKMEM_PREWARM_SUPERSLABS=0
return;
}
}
// Cap at reasonable limit (avoid OOM on typo like "10000")
if (global > 512) {
fprintf(stderr, "[SS_PREWARM] WARNING: Capping prewarm count from %ld to 512 per class\n", global);
global = 512;
}
uint32_t prewarm_count = (uint32_t)global;
// Expand LRU cache capacity to hold prewarmed SuperSlabs
uint32_t needed = prewarm_count * TINY_NUM_CLASSES;
pthread_mutex_lock(&g_super_reg_lock);
if (needed > g_ss_lru_cache.max_cached) {
g_ss_lru_cache.max_cached = needed;
// Expand memory limit (1 SuperSlab = 1MB or 2MB)
// Conservative estimate: 2MB per SuperSlab
uint64_t needed_mb = (uint64_t)needed * 2;
if (needed_mb > g_ss_lru_cache.max_memory_mb) {
g_ss_lru_cache.max_memory_mb = needed_mb;
}
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[SS_PREWARM] Expanded LRU cache: max_cached=%u max_memory_mb=%llu\n",
g_ss_lru_cache.max_cached, (unsigned long long)g_ss_lru_cache.max_memory_mb);
#endif
}
pthread_mutex_unlock(&g_super_reg_lock);
// Prewarm all classes uniformly
uint32_t counts[TINY_NUM_CLASSES];
for (int i = 0; i < TINY_NUM_CLASSES; i++) {
counts[i] = prewarm_count;
}
// Debug logging for PREWARM initialization
if (dbg == 1) {
fprintf(stderr, "[PREWARM] Allocating %u SuperSlabs for classes 0-%d (total=%u)\n",
prewarm_count, TINY_NUM_CLASSES - 1, needed);
}
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[SS_PREWARM] Starting prewarm: %u SuperSlabs per class (%u total)\n",
prewarm_count, needed);
#endif
hak_ss_prewarm_all(counts);
// Debug logging for PREWARM completion
if (dbg == 1) {
fprintf(stderr, "[PREWARM] Complete: %u SuperSlabs cached\n", g_ss_lru_cache.total_count);
}
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[SS_PREWARM] Prewarm complete (cache_count=%u)\n", g_ss_lru_cache.total_count);
#endif
}
// Debug: Get registry statistics
void hak_super_registry_stats(SuperRegStats* stats) {
if (!stats) return;
int eff_size = super_reg_effective_size();
int eff_mask = super_reg_effective_mask();
SuperRegEntry* reg = reg_entries();
stats->total_slots = eff_size;
stats->used_slots = 0;
stats->max_probe_depth = 0;
if (!reg || eff_size <= 0) {
return;
}
pthread_mutex_lock(&g_super_reg_lock);
// Count used slots
for (int i = 0; i < eff_size; i++) {
if (atomic_load_explicit(&reg[i].base, memory_order_acquire) != 0) {
stats->used_slots++;
}
}
// Calculate max probe depth
for (int i = 0; i < eff_size; i++) {
if (atomic_load_explicit(&reg[i].base, memory_order_acquire) != 0) {
uintptr_t base = atomic_load_explicit(&reg[i].base, memory_order_acquire);
int lg = reg[i].lg_size; // Phase 8.3: Use stored lg_size
int h = hak_super_hash(base, lg);
// Find actual probe depth for this entry
for (int j = 0; j < SUPER_MAX_PROBE; j++) {
int idx = (h + j) & eff_mask;
if (atomic_load_explicit(&reg[idx].base, memory_order_acquire) == base && reg[idx].lg_size == lg) {
if (j > stats->max_probe_depth) {
stats->max_probe_depth = j;
}
break;
}
}
}
}
pthread_mutex_unlock(&g_super_reg_lock);
}