Root Cause: 1. C7 stride was 1024B, unable to serve 1024B user requests (need 1025B with header) 2. New SuperSlabs start with meta->class_idx=0 (mmap zero-init) 3. superslab_init_slab() only sets class_idx if meta->class_idx==255 4. Multiple code paths used conditional assignment (if class_idx==255), leaving C7 slabs with class_idx=0 5. This caused C7 blocks to be misidentified as C0, leading to HDR_META_MISMATCH errors Changes: 1. Upgrade C7 stride: 1024B → 2048B (can now serve 1024B requests) 2. Update blocks_per_slab[7]: 64 → 32 (2048B stride / 64KB slab) 3. Update size-to-class LUT: entries 513-2048 now map to C7 4. Fix superslab_init_slab() fail-safe: only reinitialize if class_idx==255 (not 0) 5. Add explicit class_idx assignment in 6 initialization paths: - tiny_superslab_alloc.inc.h: superslab_refill() after init - hakmem_tiny_superslab.c: backend_shared after init (main path) - ss_unified_backend_box.c: unconditional assignment - ss_legacy_backend_box.c: explicit assignment - superslab_expansion_box.c: explicit assignment - ss_allocation_box.c: fail-safe condition fix Fix P0 refill bug: - Update obsolete array access after Phase 3d-B TLS SLL unification - g_tls_sll_head[cls] → g_tls_sll[cls].head - g_tls_sll_count[cls] → g_tls_sll[cls].count Results: - HDR_META_MISMATCH: eliminated (0 errors in 100K iterations) - 1024B allocations now routed to C7 (Tiny fast path) - NXT_MISALIGN warnings remain (legacy 1024B SuperSlabs, separate issue) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
316 lines
11 KiB
C
316 lines
11 KiB
C
#ifndef HAKMEM_TINY_REFILL_P0_INC_H
|
||
#define HAKMEM_TINY_REFILL_P0_INC_H
|
||
|
||
#include <stdio.h>
|
||
#include <stdatomic.h>
|
||
|
||
// hakmem_tiny_refill_p0.inc.h
|
||
// P0: Batch refill implementation (sll_refill_batch_from_ss only).
|
||
// Phase 12: DO NOT alias or redefine sll_refill_small_from_ss here.
|
||
// NOTE: This file is active only when HAKMEM_TINY_P0_BATCH_REFILL=1.
|
||
|
||
#if HAKMEM_TINY_P0_BATCH_REFILL
|
||
|
||
#include "hakmem_tiny_integrity.h"
|
||
#include "tiny_box_geometry.h" // Box 3: Geometry & Capacity Calculator
|
||
#include "tiny_refill_opt.h"
|
||
#include "tiny_fc_api.h"
|
||
#include "superslab/superslab_inline.h" // For _ss_remote_drain_to_freelist_unsafe()
|
||
#include "box/integrity_box.h" // Box I: Integrity verification (Priority ALPHA)
|
||
#include "box/tiny_next_ptr_box.h" // Box API: Next pointer read/write
|
||
|
||
// Debug counters (compile-time gated)
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
extern unsigned long long g_rf_hit_slab[];
|
||
extern unsigned long long g_rf_early_no_ss[];
|
||
extern unsigned long long g_rf_early_no_meta[];
|
||
extern unsigned long long g_rf_early_no_room[];
|
||
extern unsigned long long g_rf_early_want_zero[];
|
||
#endif
|
||
|
||
// Optional P0 diagnostic logging helper
|
||
static inline int p0_should_log(void) {
|
||
static int en = -1;
|
||
if (__builtin_expect(en == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_LOG");
|
||
en = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
return en;
|
||
}
|
||
|
||
// P0 batch refill entry point
|
||
static inline int sll_refill_batch_from_ss(int class_idx, int max_take) {
|
||
// Phase E1-CORRECT: C7 now has headers, can use P0 batch refill
|
||
|
||
// Runtime A/B kill switch (defensive). Set HAKMEM_TINY_P0_DISABLE=1 to bypass P0 path.
|
||
do {
|
||
static int g_p0_disable = -1;
|
||
if (__builtin_expect(g_p0_disable == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_DISABLE");
|
||
g_p0_disable = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
if (__builtin_expect(g_p0_disable, 0)) {
|
||
return 0;
|
||
}
|
||
} while (0);
|
||
|
||
HAK_CHECK_CLASS_IDX(class_idx, "sll_refill_batch_from_ss");
|
||
if (__builtin_expect(class_idx < 0 || class_idx >= TINY_NUM_CLASSES, 0)) {
|
||
static _Atomic int g_p0_class_oob_log = 0;
|
||
if (atomic_fetch_add_explicit(&g_p0_class_oob_log, 1, memory_order_relaxed) == 0) {
|
||
fprintf(stderr, "[P0_CLASS_OOB] class_idx=%d max_take=%d\n", class_idx, max_take);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
if (!g_use_superslab || max_take <= 0) {
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
if (!g_use_superslab) g_rf_early_no_ss[class_idx]++;
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
|
||
|
||
// Phase 3c L1D Opt: Prefetch SuperSlab hot fields early
|
||
if (tls->ss) {
|
||
__builtin_prefetch(&tls->ss->slab_bitmap, 0, 3);
|
||
__builtin_prefetch(&tls->ss->total_active_blocks, 0, 3);
|
||
}
|
||
|
||
uint32_t active_before = 0;
|
||
if (tls->ss) {
|
||
active_before = atomic_load_explicit(&tls->ss->total_active_blocks, memory_order_relaxed);
|
||
}
|
||
|
||
if (!tls->ss) {
|
||
if (!superslab_refill(class_idx)) {
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
TinySlabMeta* meta = tls->meta;
|
||
if (!meta) {
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_rf_early_no_meta[class_idx]++;
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
// Phase 3c L1D Opt: Prefetch SlabMeta hot fields (freelist, used, capacity)
|
||
__builtin_prefetch(&meta->freelist, 0, 3);
|
||
|
||
#if HAKMEM_INTEGRITY_LEVEL >= 4
|
||
uint8_t* initial_slab_base =
|
||
tls->slab_base ? tls->slab_base : tiny_slab_base_for(tls->ss, tls->slab_idx);
|
||
SlabMetadataState meta_initial =
|
||
integrity_capture_slab_metadata(meta, initial_slab_base, class_idx);
|
||
INTEGRITY_CHECK_SLAB_METADATA(meta_initial, "P0 refill entry");
|
||
#endif
|
||
|
||
// Optional: Direct-FC fast path(全クラス対応 A/B)。
|
||
// Env:
|
||
// - HAKMEM_TINY_P0_DIRECT_FC=1 → C5優先(互換)
|
||
// - HAKMEM_TINY_P0_DIRECT_FC_C7=1 → C7のみ(互換)
|
||
// - HAKMEM_TINY_P0_DIRECT_FC_ALL=1 → 全クラス(推奨、Phase 1 目標)
|
||
do {
|
||
static int g_direct_fc = -1;
|
||
static int g_direct_fc_c7 = -1;
|
||
static int g_direct_fc_all = -1;
|
||
if (__builtin_expect(g_direct_fc == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_DIRECT_FC");
|
||
g_direct_fc = (e && *e && *e == '0') ? 0 : 1;
|
||
}
|
||
if (__builtin_expect(g_direct_fc_c7 == -1, 0)) {
|
||
const char* e7 = getenv("HAKMEM_TINY_P0_DIRECT_FC_C7");
|
||
g_direct_fc_c7 = (e7 && *e7) ? ((*e7 == '0') ? 0 : 1) : 0;
|
||
}
|
||
if (__builtin_expect(g_direct_fc_all == -1, 0)) {
|
||
const char* ea = getenv("HAKMEM_TINY_P0_DIRECT_FC_ALL");
|
||
g_direct_fc_all = (ea && *ea && *ea != '0') ? 1 : 0;
|
||
}
|
||
if (__builtin_expect(g_direct_fc_all ||
|
||
(g_direct_fc && class_idx == 5) ||
|
||
(g_direct_fc_c7 && class_idx == 7), 0)) {
|
||
int room = tiny_fc_room(class_idx);
|
||
if (room <= 0) return 0;
|
||
|
||
uint32_t rmt = atomic_load_explicit(
|
||
&tls->ss->remote_counts[tls->slab_idx], memory_order_relaxed);
|
||
static int g_drain_th = -1;
|
||
if (__builtin_expect(g_drain_th == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_DRAIN_THRESH");
|
||
int v = (e && *e) ? atoi(e) : 64;
|
||
g_drain_th = (v < 0) ? 0 : v;
|
||
}
|
||
if (rmt >= (uint32_t)g_drain_th) {
|
||
static int no_drain = -1;
|
||
if (__builtin_expect(no_drain == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_NO_DRAIN");
|
||
no_drain = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
if (!no_drain) {
|
||
_ss_remote_drain_to_freelist_unsafe(
|
||
tls->ss, tls->slab_idx, tls->meta);
|
||
}
|
||
}
|
||
|
||
void* out[128];
|
||
int produced = 0;
|
||
TinySlabMeta* m = tls->meta;
|
||
size_t bs = tiny_stride_for_class(class_idx);
|
||
uint8_t* base = tls->slab_base
|
||
? tls->slab_base
|
||
: tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
|
||
while (produced < room) {
|
||
if (m->freelist) {
|
||
void* p = m->freelist;
|
||
m->freelist = tiny_next_read(class_idx, p);
|
||
m->used++;
|
||
out[produced++] = p;
|
||
} else if (m->carved < m->capacity) {
|
||
void* p = (void*)(base + ((size_t)m->carved * bs));
|
||
m->carved++;
|
||
m->used++;
|
||
out[produced++] = p;
|
||
} else {
|
||
if (!superslab_refill(class_idx)) break;
|
||
tls = &g_tls_slabs[class_idx];
|
||
m = tls->meta;
|
||
base = tls->slab_base
|
||
? tls->slab_base
|
||
: tiny_slab_base_for(tls->ss, tls->slab_idx);
|
||
}
|
||
}
|
||
if (produced > 0) {
|
||
ss_active_add(tls->ss, (uint32_t)produced);
|
||
(void)tiny_fc_push_bulk(class_idx, out, produced);
|
||
return produced;
|
||
}
|
||
// fallthrough to regular path
|
||
}
|
||
} while (0);
|
||
|
||
uint32_t sll_cap = sll_cap_for_class(class_idx, (uint32_t)TINY_TLS_MAG_CAP);
|
||
int room = (int)sll_cap - (int)g_tls_sll[class_idx].count;
|
||
if (room <= 0) {
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_rf_early_no_room[class_idx]++;
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
uint32_t want = (uint32_t)max_take;
|
||
if (want > (uint32_t)room) want = (uint32_t)room;
|
||
if (want == 0) {
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_rf_early_want_zero[class_idx]++;
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
size_t bs = tiny_stride_for_class(class_idx);
|
||
int total_taken = 0;
|
||
|
||
while (want > 0) {
|
||
uintptr_t ss_base = 0;
|
||
uintptr_t ss_limit = 0;
|
||
if (tls->ss && tls->slab_idx >= 0) {
|
||
uint8_t* slab_base =
|
||
tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
|
||
ss_base = (uintptr_t)slab_base;
|
||
ss_limit = ss_base + tiny_usable_bytes_for_slab(tls->slab_idx);
|
||
}
|
||
|
||
if (tls->ss && tls->slab_idx >= 0) {
|
||
uint32_t remote_count = atomic_load_explicit(
|
||
&tls->ss->remote_counts[tls->slab_idx], memory_order_relaxed);
|
||
if (remote_count > 0) {
|
||
static int no_drain = -1;
|
||
if (__builtin_expect(no_drain == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_NO_DRAIN");
|
||
no_drain = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
if (!no_drain) {
|
||
_ss_remote_drain_to_freelist_unsafe(tls->ss, tls->slab_idx, meta);
|
||
}
|
||
}
|
||
}
|
||
|
||
TinyRefillChain chain;
|
||
uint32_t from_freelist = trc_pop_from_freelist(
|
||
meta, class_idx, ss_base, ss_limit, bs, want, &chain);
|
||
if (from_freelist > 0) {
|
||
trc_splice_to_sll(
|
||
class_idx, &chain,
|
||
&g_tls_sll[class_idx].head,
|
||
&g_tls_sll[class_idx].count);
|
||
ss_active_add(tls->ss, from_freelist);
|
||
meta->used = (uint16_t)((uint32_t)meta->used + from_freelist);
|
||
|
||
// Phase 3c L1D Opt: Prefetch next freelist entry after refill
|
||
if (meta->freelist) {
|
||
__builtin_prefetch(meta->freelist, 0, 3);
|
||
}
|
||
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
extern unsigned long long g_rf_freelist_items[];
|
||
g_rf_freelist_items[class_idx] += from_freelist;
|
||
#endif
|
||
total_taken += from_freelist;
|
||
want -= from_freelist;
|
||
if (want == 0) break;
|
||
}
|
||
|
||
if (meta->carved >= meta->capacity) {
|
||
if (!superslab_refill(class_idx)) break;
|
||
tls = &g_tls_slabs[class_idx];
|
||
meta = tls->meta;
|
||
if (!meta) break;
|
||
continue;
|
||
}
|
||
|
||
uint32_t available = meta->capacity - meta->carved;
|
||
uint32_t batch = want;
|
||
if (batch > available) batch = available;
|
||
if (batch == 0) break;
|
||
|
||
uint8_t* slab_base = tls->slab_base
|
||
? tls->slab_base
|
||
: tiny_slab_base_for(tls->ss, tls->slab_idx);
|
||
|
||
TinyRefillChain carve;
|
||
trc_linear_carve(slab_base, bs, meta, batch, class_idx, &carve);
|
||
trc_splice_to_sll(
|
||
class_idx, &carve,
|
||
&g_tls_sll[class_idx].head,
|
||
&g_tls_sll[class_idx].count);
|
||
ss_active_add(tls->ss, batch);
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
extern unsigned long long g_rf_carve_items[];
|
||
g_rf_carve_items[class_idx] += batch;
|
||
#endif
|
||
total_taken += batch;
|
||
want -= batch;
|
||
}
|
||
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_rf_hit_slab[class_idx]++;
|
||
#endif
|
||
|
||
if (tls->ss && p0_should_log()) {
|
||
uint32_t active_after = atomic_load_explicit(
|
||
&tls->ss->total_active_blocks, memory_order_relaxed);
|
||
int32_t delta =
|
||
(int32_t)active_after - (int32_t)active_before;
|
||
fprintf(stderr,
|
||
"[P0_COUNTER] cls=%d slab=%d taken=%d active_delta=%d\n",
|
||
class_idx, tls->slab_idx, total_taken, delta);
|
||
}
|
||
|
||
return total_taken;
|
||
}
|
||
|
||
#endif // HAKMEM_TINY_P0_BATCH_REFILL
|
||
#endif // HAKMEM_TINY_REFILL_P0_INC_H
|