- Fix HAKMEM_LOG gating to use (numeric) so release builds compile out logs. - Switch remaining prints to HAKMEM_LOG or guard with : - core/box/hak_core_init.inc.h (EVO sample warning, shutdown banner) - core/hakmem_config.c (config/feature prints) - core/hakmem.c (BigCache eviction prints) - core/hakmem_tiny_superslab.c (OOM, head init/expand, C7 init diagnostics) - core/hakmem_elo.c (init/evolution) - core/hakmem_batch.c (init/flush/stats) - core/hakmem_ace.c (33KB route diagnostics) - core/hakmem_ace_controller.c (ACE logs macro → no-op in release) - core/hakmem_site_rules.c (init banner) - core/box/hak_free_api.inc.h (unknown method error → release-gated) - Rebuilt benches and verified quiet output for release: - bench_fixed_size_hakmem/system - bench_random_mixed_hakmem/system - bench_mid_large_mt_hakmem/system - bench_comprehensive_hakmem/system Note: Kept debug logs available in debug builds and when explicitly toggled via env.
384 lines
16 KiB
C
384 lines
16 KiB
C
// hakmem_tiny_refill_p0.inc.h
|
||
// ChatGPT Pro P0: Complete Batch Refill (SLL用)
|
||
//
|
||
// Purpose: Optimize sll_refill_small_from_ss with batch carving
|
||
// Based on: tls_refill_from_tls_slab (hakmem_tiny_tls_ops.h:115-126)
|
||
//
|
||
// Key optimization: ss_active_inc × 64 → ss_active_add × 1
|
||
//
|
||
// Maintains: Existing g_tls_sll_head fast path (no changes to hot path!)
|
||
//
|
||
// Enable P0 by default for testing (set to 0 to disable)
|
||
#ifndef HAKMEM_TINY_P0_BATCH_REFILL
|
||
#define HAKMEM_TINY_P0_BATCH_REFILL 0
|
||
#endif
|
||
|
||
#ifndef HAKMEM_TINY_REFILL_P0_INC_H
|
||
#define HAKMEM_TINY_REFILL_P0_INC_H
|
||
|
||
#include "tiny_box_geometry.h" // Box 3: Geometry & Capacity Calculator
|
||
|
||
// Debug counters (compile-time gated)
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
extern unsigned long long g_rf_hit_slab[];
|
||
// Diagnostic counters for refill early returns
|
||
extern unsigned long long g_rf_early_no_ss[]; // Line 27: !g_use_superslab
|
||
extern unsigned long long g_rf_early_no_meta[]; // Line 35: !meta
|
||
extern unsigned long long g_rf_early_no_room[]; // Line 40: room <= 0
|
||
extern unsigned long long g_rf_early_want_zero[]; // Line 55: want == 0
|
||
#endif
|
||
|
||
// Refill TLS SLL from SuperSlab with batch carving (P0 optimization)
|
||
#include "tiny_refill_opt.h"
|
||
#include "tiny_fc_api.h"
|
||
#include "superslab/superslab_inline.h" // For _ss_remote_drain_to_freelist_unsafe()
|
||
// Optional P0 diagnostic logging helper
|
||
static inline int p0_should_log(void) {
|
||
static int en = -1;
|
||
if (__builtin_expect(en == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_LOG");
|
||
en = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
return en;
|
||
}
|
||
|
||
static inline int sll_refill_batch_from_ss(int class_idx, int max_take) {
|
||
// CRITICAL: C7 (1KB) is headerless - incompatible with TLS SLL refill
|
||
// Reason: TLS SLL stores next pointer in first 8 bytes (user data for C7)
|
||
// Solution: Skip refill for C7, force slow path allocation
|
||
if (__builtin_expect(class_idx == 7, 0)) {
|
||
return 0; // C7 uses slow path exclusively
|
||
}
|
||
|
||
// Runtime A/B kill switch (defensive). Set HAKMEM_TINY_P0_DISABLE=1 to bypass P0 path.
|
||
do {
|
||
static int g_p0_disable = -1;
|
||
if (__builtin_expect(g_p0_disable == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_DISABLE");
|
||
g_p0_disable = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
if (__builtin_expect(g_p0_disable, 0)) {
|
||
return 0;
|
||
}
|
||
} while (0);
|
||
if (!g_use_superslab || max_take <= 0) {
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
if (!g_use_superslab) g_rf_early_no_ss[class_idx]++;
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
|
||
uint32_t active_before = 0;
|
||
if (tls->ss) {
|
||
active_before = atomic_load_explicit(&tls->ss->total_active_blocks, memory_order_relaxed);
|
||
}
|
||
|
||
// CRITICAL DEBUG: Log class 7 pre-warm
|
||
if (__builtin_expect(class_idx == 7 && p0_should_log(), 0)) {
|
||
fprintf(stderr, "[P0_DEBUG_C7] Entry: tls->ss=%p tls->meta=%p max_take=%d\n",
|
||
(void*)tls->ss, (void*)tls->meta, max_take);
|
||
}
|
||
|
||
if (!tls->ss) {
|
||
// Try to obtain a SuperSlab for this class
|
||
if (superslab_refill(class_idx) == NULL) {
|
||
if (__builtin_expect(class_idx == 7 && p0_should_log(), 0)) {
|
||
fprintf(stderr, "[P0_DEBUG_C7] superslab_refill() returned NULL\n");
|
||
}
|
||
return 0;
|
||
}
|
||
if (__builtin_expect(class_idx == 7 && p0_should_log(), 0)) {
|
||
fprintf(stderr, "[P0_DEBUG_C7] After superslab_refill(): tls->ss=%p tls->meta=%p\n",
|
||
(void*)tls->ss, (void*)tls->meta);
|
||
}
|
||
}
|
||
TinySlabMeta* meta = tls->meta;
|
||
if (!meta) {
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_rf_early_no_meta[class_idx]++;
|
||
#endif
|
||
if (__builtin_expect(class_idx == 7 && p0_should_log(), 0)) {
|
||
fprintf(stderr, "[P0_DEBUG_C7] meta is NULL after superslab_refill, returning 0\n");
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
// Optional: Direct-FC fast path for class 5 (256B) / class 7 (1024B)
|
||
// env:
|
||
// - HAKMEM_TINY_P0_DIRECT_FC (default ON for class5)
|
||
// - HAKMEM_TINY_P0_DIRECT_FC_C7 (default OFF for class7)
|
||
do {
|
||
static int g_direct_fc = -1;
|
||
static int g_direct_fc_c7 = -1;
|
||
if (__builtin_expect(g_direct_fc == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_DIRECT_FC");
|
||
// Default ON when unset
|
||
g_direct_fc = (e && *e && *e == '0') ? 0 : 1;
|
||
}
|
||
if (__builtin_expect(g_direct_fc_c7 == -1, 0)) {
|
||
const char* e7 = getenv("HAKMEM_TINY_P0_DIRECT_FC_C7");
|
||
// Default OFF for class7 (1KB) until stability is fully verified; opt-in via env
|
||
g_direct_fc_c7 = (e7 && *e7) ? ((*e7 == '0') ? 0 : 1) : 0;
|
||
}
|
||
if (__builtin_expect((g_direct_fc && class_idx == 5) || (g_direct_fc_c7 && class_idx == 7), 0)) {
|
||
int room = tiny_fc_room(class_idx);
|
||
if (room <= 0) return 0;
|
||
// Drain only if above threshold
|
||
uint32_t rmt = atomic_load_explicit(&tls->ss->remote_counts[tls->slab_idx], memory_order_relaxed);
|
||
static int g_drain_th = -1;
|
||
if (__builtin_expect(g_drain_th == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_DRAIN_THRESH");
|
||
g_drain_th = (e && *e) ? atoi(e) : 64;
|
||
if (g_drain_th < 0) g_drain_th = 0;
|
||
}
|
||
if (rmt >= (uint32_t)g_drain_th) {
|
||
static int no_drain = -1;
|
||
if (__builtin_expect(no_drain == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_NO_DRAIN");
|
||
no_drain = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
if (!no_drain) {
|
||
_ss_remote_drain_to_freelist_unsafe(tls->ss, tls->slab_idx, tls->meta);
|
||
}
|
||
}
|
||
// Gather pointers without writing into objects
|
||
void* out[128]; int produced = 0;
|
||
TinySlabMeta* m = tls->meta;
|
||
// Box 3: Get stride (block size + header, except C7 which is headerless)
|
||
size_t bs = tiny_stride_for_class(class_idx);
|
||
uint8_t* base = tls->slab_base ? tls->slab_base : tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
|
||
while (produced < room) {
|
||
if (__builtin_expect(m->freelist != NULL, 0)) {
|
||
void* p = m->freelist; m->freelist = *(void**)p; m->used++;
|
||
out[produced++] = p;
|
||
continue;
|
||
}
|
||
if (__builtin_expect(m->carved < m->capacity, 1)) {
|
||
void* p = (void*)(base + ((size_t)m->carved * bs));
|
||
m->carved++; m->used++;
|
||
out[produced++] = p;
|
||
continue;
|
||
}
|
||
// Need to move to another slab with space
|
||
if (__builtin_expect(superslab_refill(class_idx) == NULL, 0)) break;
|
||
// Rebind
|
||
tls = &g_tls_slabs[class_idx];
|
||
m = tls->meta;
|
||
base = tls->slab_base ? tls->slab_base : tiny_slab_base_for(tls->ss, tls->slab_idx);
|
||
}
|
||
if (produced > 0) {
|
||
ss_active_add(tls->ss, (uint32_t)produced);
|
||
int pushed = tiny_fc_push_bulk(class_idx, out, produced);
|
||
(void)pushed; // roomに合わせているので一致するはず
|
||
if (p0_should_log()) {
|
||
static _Atomic int g_logged = 0;
|
||
int exp = 0;
|
||
if (atomic_compare_exchange_strong(&g_logged, &exp, 1)) {
|
||
fprintf(stderr, "[P0_DIRECT_FC_TAKE] cls=%d take=%d room=%d drain_th=%d remote_cnt=%u\n",
|
||
class_idx, produced, room, g_drain_th, rmt);
|
||
}
|
||
}
|
||
return produced;
|
||
}
|
||
// fallthrough to regular path
|
||
}
|
||
} while (0);
|
||
|
||
// Compute how many we can actually push into SLL without overflow
|
||
uint32_t sll_cap = sll_cap_for_class(class_idx, (uint32_t)TINY_TLS_MAG_CAP);
|
||
int room = (int)sll_cap - (int)g_tls_sll_count[class_idx];
|
||
if (room <= 0) {
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_rf_early_no_room[class_idx]++;
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
// For hot tiny classes (0..3), allow an env override to increase batch size
|
||
uint32_t want = (uint32_t)max_take;
|
||
if (class_idx <= 3) {
|
||
static int g_hot_override = -2; // -2 = uninitialized, -1 = no override, >0 = value
|
||
if (__builtin_expect(g_hot_override == -2, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_REFILL_COUNT_HOT");
|
||
int v = (e && *e) ? atoi(e) : -1;
|
||
if (v < 0) v = -1; if (v > 256) v = 256; // clamp
|
||
g_hot_override = v;
|
||
}
|
||
if (g_hot_override > 0) want = (uint32_t)g_hot_override;
|
||
} else {
|
||
// Mid classes (>=4): optional override for batch size
|
||
static int g_mid_override = -2; // -2 = uninitialized, -1 = no override, >0 = value
|
||
if (__builtin_expect(g_mid_override == -2, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_REFILL_COUNT_MID");
|
||
int v = (e && *e) ? atoi(e) : -1;
|
||
if (v < 0) v = -1; if (v > 256) v = 256; // clamp
|
||
g_mid_override = v;
|
||
}
|
||
if (g_mid_override > 0) want = (uint32_t)g_mid_override;
|
||
}
|
||
if (want > (uint32_t)room) want = (uint32_t)room;
|
||
if (want == 0) {
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_rf_early_want_zero[class_idx]++;
|
||
#endif
|
||
return 0;
|
||
}
|
||
|
||
// Box 3: Get stride (block size + header, except C7 which is headerless)
|
||
size_t bs = tiny_stride_for_class(class_idx);
|
||
int total_taken = 0;
|
||
|
||
// === P0 Batch Carving Loop ===
|
||
while (want > 0) {
|
||
// Calculate slab base for validation (accounts for 2048 offset in slab 0)
|
||
uintptr_t ss_base = 0;
|
||
uintptr_t ss_limit = 0;
|
||
if (tls->ss && tls->slab_idx >= 0) {
|
||
// Box 3: Get slab base (handles Slab 0 offset)
|
||
uint8_t* slab_base = tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
|
||
ss_base = (uintptr_t)slab_base;
|
||
// Box 3: Get usable bytes for limit calculation
|
||
ss_limit = ss_base + tiny_usable_bytes_for_slab(tls->slab_idx);
|
||
}
|
||
|
||
// CRITICAL FIX: Drain remote queue BEFORE popping from freelist
|
||
// Without this, blocks in both freelist and remote queue can be double-allocated
|
||
// (Thread A pops from freelist, Thread B adds to remote queue, Thread A drains remote → overwrites user data)
|
||
// OPTIMIZATION: Only drain if remote queue is non-empty (check atomic counter)
|
||
if (tls->ss && tls->slab_idx >= 0) {
|
||
uint32_t remote_count = atomic_load_explicit(&tls->ss->remote_counts[tls->slab_idx], memory_order_relaxed);
|
||
if (remote_count > 0) {
|
||
// Runtime A/B: allow skipping remote drain for切り分け
|
||
static int no_drain = -1;
|
||
if (__builtin_expect(no_drain == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_P0_NO_DRAIN");
|
||
no_drain = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
if (!no_drain) {
|
||
_ss_remote_drain_to_freelist_unsafe(tls->ss, tls->slab_idx, meta);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Handle freelist items first (usually 0)
|
||
TinyRefillChain chain;
|
||
uint32_t from_freelist = trc_pop_from_freelist(
|
||
meta, class_idx, ss_base, ss_limit, bs, want, &chain);
|
||
if (from_freelist > 0) {
|
||
trc_splice_to_sll(class_idx, &chain, &g_tls_sll_head[class_idx], &g_tls_sll_count[class_idx]);
|
||
// FIX: Blocks from freelist were decremented when freed, must increment when allocated
|
||
ss_active_add(tls->ss, from_freelist);
|
||
// FIX: Keep TinySlabMeta::used consistent with non-P0 path
|
||
meta->used = (uint16_t)((uint32_t)meta->used + from_freelist);
|
||
extern unsigned long long g_rf_freelist_items[];
|
||
g_rf_freelist_items[class_idx] += from_freelist;
|
||
total_taken += from_freelist;
|
||
want -= from_freelist;
|
||
if (want == 0) break;
|
||
}
|
||
|
||
// === Linear Carve (P0 Key Optimization!) ===
|
||
// Use monotonic 'carved' to track linear progression (used can decrement on free)
|
||
if (meta->carved >= meta->capacity) {
|
||
// Slab exhausted, try to get another
|
||
if (superslab_refill(class_idx) == NULL) break;
|
||
// CRITICAL FIX: Reload tls pointer after superslab_refill() binds new slab
|
||
tls = &g_tls_slabs[class_idx];
|
||
meta = tls->meta;
|
||
if (!meta) break;
|
||
continue;
|
||
}
|
||
|
||
uint32_t available = meta->capacity - meta->carved;
|
||
uint32_t batch = want;
|
||
if (batch > available) batch = available;
|
||
if (batch == 0) break;
|
||
|
||
// Get slab base
|
||
uint8_t* slab_base = tls->slab_base ? tls->slab_base
|
||
: tiny_slab_base_for(tls->ss, tls->slab_idx);
|
||
|
||
// Diagnostic log (one-shot)
|
||
#if !HAKMEM_BUILD_RELEASE
|
||
static _Atomic int g_carve_log_printed = 0;
|
||
if (atomic_load(&g_carve_log_printed) == 0 &&
|
||
atomic_exchange(&g_carve_log_printed, 1) == 0) {
|
||
fprintf(stderr, "[BATCH_CARVE] cls=%u slab=%d used=%u cap=%u batch=%u base=%p bs=%zu\n",
|
||
class_idx, tls->slab_idx, meta->used, meta->capacity, batch,
|
||
(void*)slab_base, bs);
|
||
fflush(stderr);
|
||
}
|
||
#endif
|
||
|
||
TinyRefillChain carve;
|
||
trc_linear_carve(slab_base, bs, meta, batch, class_idx, &carve);
|
||
|
||
// One-shot sanity: validate first few nodes are within the slab and stride-aligned
|
||
#if !HAKMEM_BUILD_RELEASE
|
||
do {
|
||
static _Atomic int g_once = 0;
|
||
int exp = 0;
|
||
if (atomic_compare_exchange_strong(&g_once, &exp, 1)) {
|
||
uintptr_t base_chk = (uintptr_t)(tls->slab_base ? tls->slab_base : tiny_slab_base_for(tls->ss, tls->slab_idx));
|
||
uintptr_t limit_chk = base_chk + tiny_usable_bytes_for_slab(tls->slab_idx);
|
||
void* node = carve.head;
|
||
for (int i = 0; i < 3 && node; i++) {
|
||
uintptr_t a = (uintptr_t)node;
|
||
if (!(a >= base_chk && a < limit_chk)) {
|
||
fprintf(stderr, "[P0_SANITY_FAIL] out_of_range cls=%d node=%p base=%p limit=%p bs=%zu\n",
|
||
class_idx, node, (void*)base_chk, (void*)limit_chk, bs);
|
||
abort();
|
||
}
|
||
size_t off = (size_t)(a - base_chk);
|
||
if ((off % bs) != 0) {
|
||
fprintf(stderr, "[P0_SANITY_FAIL] misaligned cls=%d node=%p off=%zu bs=%zu base=%p\n",
|
||
class_idx, node, off, bs, (void*)base_chk);
|
||
abort();
|
||
}
|
||
#if HAKMEM_TINY_HEADER_CLASSIDX
|
||
const size_t next_off = (class_idx == 7) ? 0 : 1;
|
||
#else
|
||
const size_t next_off = 0;
|
||
#endif
|
||
node = *(void**)((uint8_t*)node + next_off);
|
||
}
|
||
}
|
||
} while (0);
|
||
#endif
|
||
trc_splice_to_sll(class_idx, &carve, &g_tls_sll_head[class_idx], &g_tls_sll_count[class_idx]);
|
||
// FIX: Update SuperSlab active counter (was missing!)
|
||
ss_active_add(tls->ss, batch);
|
||
extern unsigned long long g_rf_carve_items[];
|
||
g_rf_carve_items[class_idx] += batch;
|
||
|
||
total_taken += batch;
|
||
want -= batch;
|
||
}
|
||
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
// Track successful SLL refills from SuperSlab (compile-time gated)
|
||
// NOTE: Increment unconditionally to verify counter is working
|
||
g_rf_hit_slab[class_idx]++;
|
||
#endif
|
||
|
||
if (tls->ss && p0_should_log()) {
|
||
uint32_t active_after = atomic_load_explicit(&tls->ss->total_active_blocks, memory_order_relaxed);
|
||
int32_t delta = (int32_t)active_after - (int32_t)active_before;
|
||
if ((int32_t)total_taken != delta) {
|
||
fprintf(stderr,
|
||
"[P0_COUNTER_MISMATCH] cls=%d slab=%d taken=%d active_delta=%d used=%u carved=%u cap=%u freelist=%p\n",
|
||
class_idx, tls->slab_idx, total_taken, delta,
|
||
(unsigned)meta->used, (unsigned)meta->carved, (unsigned)meta->capacity,
|
||
meta->freelist);
|
||
} else {
|
||
fprintf(stderr,
|
||
"[P0_COUNTER_OK] cls=%d slab=%d taken=%d active_delta=%d\n",
|
||
class_idx, tls->slab_idx, total_taken, delta);
|
||
}
|
||
}
|
||
return total_taken;
|
||
}
|
||
|
||
#endif // HAKMEM_TINY_REFILL_P0_INC_H
|