Files
hakmem/core/box/ss_tier_box.h
Moe Charm (CI) d5e6ed535c P-Tier + Tiny Route Policy: Aggressive Superslab Management + Safe Routing
## Phase 1: Utilization-Aware Superslab Tiering (案B実装済)

- Add ss_tier_box.h: Classify SuperSlabs into HOT/DRAINING/FREE based on utilization
  - HOT (>25%): Accept new allocations
  - DRAINING (≤25%): Drain only, no new allocs
  - FREE (0%): Ready for eager munmap

- Enhanced shared_pool_release_slab():
  - Check tier transition after each slab release
  - If tier→FREE: Force remaining slots to EMPTY and call superslab_free() immediately
  - Bypasses LRU cache to prevent registry bloat from accumulating DRAINING SuperSlabs

- Test results (bench_random_mixed_hakmem):
  - 1M iterations:  ~1.03M ops/s (previously passed)
  - 10M iterations:  ~1.15M ops/s (previously: registry full error)
  - 50M iterations:  ~1.08M ops/s (stress test)

## Phase 2: Tiny Front Routing Policy (新規Box)

- Add tiny_route_box.h/c: Single 8-byte table for class→routing decisions
  - ROUTE_TINY_ONLY: Tiny front exclusive (no fallback)
  - ROUTE_TINY_FIRST: Try Tiny, fallback to Pool if fails
  - ROUTE_POOL_ONLY: Skip Tiny entirely

- Profiles via HAKMEM_TINY_PROFILE ENV:
  - "hot": C0-C3=TINY_ONLY, C4-C6=TINY_FIRST, C7=POOL_ONLY
  - "conservative" (default): All TINY_FIRST
  - "off": All POOL_ONLY (disable Tiny)
  - "full": All TINY_ONLY (microbench mode)

- A/B test results (ws=256, 100k ops random_mixed):
  - Default (conservative): ~2.90M ops/s
  - hot: ~2.65M ops/s (more conservative)
  - off: ~2.86M ops/s
  - full: ~2.98M ops/s (slightly best)

## Design Rationale

### Registry Pressure Fix (案B)
- Problem: DRAINING tier SS occupied registry indefinitely
- Solution: When total_active_blocks→0, immediately free to clear registry slot
- Result: No more "registry full" errors under stress

### Routing Policy Box (新)
- Problem: Tiny front optimization scattered across ENV/branches
- Solution: Centralize routing in single table, select profiles via ENV
- Benefit: Safe A/B testing without touching hot path code
- Future: Integrate with RSS budget/learning layers for dynamic profile switching

## Next Steps (性能最適化)
- Profile Tiny front internals (TLS SLL, FastCache, Superslab backend latency)
- Identify bottleneck between current ~2.9M ops/s and mimalloc ~100M ops/s
- Consider:
  - Reduce shared pool lock contention
  - Optimize unified cache hit rate
  - Streamline Superslab carving logic

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 18:01:25 +09:00

303 lines
11 KiB
C

// ss_tier_box.h - P-Tier: Utilization-Aware SuperSlab Tiering Box
// Purpose: Manage SuperSlab tier transitions based on utilization
// License: MIT
// Date: 2025-12-04
#ifndef HAK_SS_TIER_BOX_H
#define HAK_SS_TIER_BOX_H
#include <stdatomic.h>
#include <stdbool.h>
#include <stdlib.h> // for getenv()
#include "../superslab/superslab_types.h"
// ============================================================================
// P-Tier: Utilization-Aware SuperSlab Tiering Box
// ============================================================================
//
// Goal: Reduce registry pressure by consolidating allocations to HOT SuperSlabs
// and efficiently draining DRAINING SuperSlabs.
//
// Tier Definitions:
// - HOT (>25% utilization): Accept new allocations, actively used
// - DRAINING (<=25% utilization): Drain only, no new allocations
// - FREE (0% utilization): Ready for LRU cache or munmap
//
// Strategy:
// - Allocations target HOT tier SuperSlabs only
// - DRAINING tier SuperSlabs accept no new allocations
// - Automatic transitions based on utilization thresholds
// - Hysteresis prevents thrashing between HOT and DRAINING
//
// Expected Benefits:
// - Reduced registry size (fewer partially-used SuperSlabs)
// - Improved cache locality (concentrated allocations)
// - Faster allocation (skip DRAINING SuperSlabs)
// - Efficient memory reclamation (clear path to FREE tier)
//
// Box Contract:
// - ss_tier_calc_utilization(): Calculate current utilization [0.0, 1.0]
// - ss_tier_check_transition(): Check and perform tier transitions
// - ss_tier_get(): Get current tier
// - ss_tier_is_hot(): Quick check if SuperSlab accepts allocations
// - ss_tier_set(): Force tier change (testing/debug)
//
// ============================================================================
// Default thresholds (can be overridden by environment variables)
#define SS_TIER_DOWN_THRESHOLD_DEFAULT 0.25f // HOT → DRAINING (25% utilization)
#define SS_TIER_UP_THRESHOLD_DEFAULT 0.50f // DRAINING → HOT (50% utilization, hysteresis)
// Environment variable support for runtime configuration
// ENV: HAKMEM_SS_TIER_DOWN_THRESHOLD (default: 0.25)
// ENV: HAKMEM_SS_TIER_UP_THRESHOLD (default: 0.50)
static inline float ss_tier_get_down_threshold(void) {
static float cached = -1.0f;
if (__builtin_expect(cached < 0.0f, 0)) {
const char* e = getenv("HAKMEM_SS_TIER_DOWN_THRESHOLD");
if (e && *e) {
float v = (float)atof(e);
cached = (v > 0.0f && v <= 1.0f) ? v : SS_TIER_DOWN_THRESHOLD_DEFAULT;
} else {
cached = SS_TIER_DOWN_THRESHOLD_DEFAULT;
}
}
return cached;
}
static inline float ss_tier_get_up_threshold(void) {
static float cached = -1.0f;
if (__builtin_expect(cached < 0.0f, 0)) {
const char* e = getenv("HAKMEM_SS_TIER_UP_THRESHOLD");
if (e && *e) {
float v = (float)atof(e);
cached = (v > 0.0f && v <= 1.0f) ? v : SS_TIER_UP_THRESHOLD_DEFAULT;
} else {
cached = SS_TIER_UP_THRESHOLD_DEFAULT;
}
}
return cached;
}
// ============================================================================
// 1. Utilization Calculation
// ============================================================================
//
// Calculates current utilization as: total_active_blocks / total_capacity
//
// Uses:
// - ss->total_active_blocks: Atomic counter of all active blocks across slabs
// - ss->active_slabs: Number of carved slabs
// - ss->slabs[].capacity: Per-slab capacity
//
// Returns: Utilization ratio [0.0, 1.0]
// 0.0 = completely empty (FREE tier candidate)
// 1.0 = fully utilized (strong HOT tier)
//
// Note: Uses relaxed memory order as this is a heuristic for tier classification,
// not a safety-critical invariant.
// ============================================================================
static inline float ss_tier_calc_utilization(SuperSlab* ss) {
if (!ss) return 0.0f;
// Get current active blocks (atomic load)
uint32_t active = atomic_load_explicit(&ss->total_active_blocks, memory_order_relaxed);
// Calculate total capacity across all active slabs
// Note: We sum capacity from active_slabs to handle per-slab class assignment (Phase 12)
uint32_t total_capacity = 0;
uint32_t max_slabs = (1u << ss->lg_size) / SLAB_SIZE;
if (max_slabs > SLABS_PER_SUPERSLAB_MAX) {
max_slabs = SLABS_PER_SUPERSLAB_MAX;
}
// Iterate through active slabs and sum capacity
for (uint32_t i = 0; i < max_slabs && i < ss->active_slabs; i++) {
TinySlabMeta* meta = &ss->slabs[i];
if (meta->capacity > 0) {
total_capacity += meta->capacity;
}
}
// Handle edge case: no capacity yet (fresh SuperSlab)
if (total_capacity == 0) {
return 0.0f;
}
// Return utilization ratio
return (float)active / (float)total_capacity;
}
// ============================================================================
// 2. Tier Transition Check
// ============================================================================
//
// Checks current utilization and performs tier transitions if needed.
//
// Transition Rules:
// - HOT → DRAINING: utilization <= down_threshold (default: 25%)
// - DRAINING → HOT: utilization >= up_threshold (default: 50%, hysteresis)
// - DRAINING → FREE: utilization == 0% (all blocks freed)
// - FREE → HOT: First allocation (handled by allocation path, not here)
//
// Hysteresis Rationale:
// - Down threshold (25%) < Up threshold (50%) prevents oscillation
// - SuperSlab must demonstrate sustained activity to return to HOT
//
// Returns: true if tier transition occurred, false otherwise
//
// Thread Safety: Uses atomic compare_exchange for safe concurrent transitions
// ============================================================================
static inline bool ss_tier_check_transition(SuperSlab* ss) {
if (!ss) return false;
// Calculate current utilization
float util = ss_tier_calc_utilization(ss);
// Get current tier (atomic load)
uint8_t current_tier = atomic_load_explicit(&ss->tier, memory_order_acquire);
// Get thresholds (cached after first call)
float down_thresh = ss_tier_get_down_threshold();
float up_thresh = ss_tier_get_up_threshold();
// Determine target tier based on utilization and current state
uint8_t target_tier = current_tier;
switch (current_tier) {
case SS_TIER_HOT:
// HOT → DRAINING: Drop below down threshold
if (util <= down_thresh) {
target_tier = SS_TIER_DRAINING;
}
// HOT → FREE: Complete deallocation (rare, usually via DRAINING)
if (util == 0.0f) {
target_tier = SS_TIER_FREE;
}
break;
case SS_TIER_DRAINING:
// DRAINING → HOT: Rise above up threshold (hysteresis)
if (util >= up_thresh) {
target_tier = SS_TIER_HOT;
}
// DRAINING → FREE: Complete deallocation
if (util == 0.0f) {
target_tier = SS_TIER_FREE;
}
break;
case SS_TIER_FREE:
// FREE → HOT: First allocation (util > 0)
// Note: Typically handled by allocation path setting tier directly
if (util > 0.0f) {
target_tier = SS_TIER_HOT;
}
break;
default:
// Invalid tier, reset to HOT (defensive)
target_tier = SS_TIER_HOT;
break;
}
// If no transition needed, return early
if (target_tier == current_tier) {
return false;
}
// Attempt atomic transition (CAS loop for concurrent safety)
// Note: We use weak CAS in a loop for efficiency on weak-memory architectures
uint8_t expected = current_tier;
while (!atomic_compare_exchange_weak_explicit(
&ss->tier,
&expected,
target_tier,
memory_order_release, // Success: publish tier change
memory_order_relaxed // Failure: retry with updated expected
)) {
// Concurrent modification detected, re-evaluate
// If tier already changed to target, we're done
if (expected == target_tier) {
return false; // Another thread completed the transition
}
// Otherwise, retry with new expected value
}
// Transition successful
return true;
}
// ============================================================================
// 3. Tier State Query
// ============================================================================
//
// Returns the current tier of the SuperSlab.
//
// Returns: SS_TIER_HOT, SS_TIER_DRAINING, or SS_TIER_FREE
//
// Memory Order: Acquire ensures we see all updates made before tier was set
// ============================================================================
static inline SSTier ss_tier_get(SuperSlab* ss) {
if (!ss) return SS_TIER_FREE; // Defensive: NULL = not usable
uint8_t tier = atomic_load_explicit(&ss->tier, memory_order_acquire);
return (SSTier)tier;
}
// ============================================================================
// 4. Hot Tier Check (Allocation Eligibility)
// ============================================================================
//
// Fast path check: Can this SuperSlab accept new allocations?
//
// Returns: true if SuperSlab is in HOT tier (accepts allocations)
// false otherwise (DRAINING or FREE, skip for allocation)
//
// Usage: Called by allocation path to filter candidate SuperSlabs
//
// Memory Order: Relaxed is sufficient as this is a filtering heuristic,
// not a safety invariant. Worst case: we occasionally skip
// a freshly-promoted HOT SuperSlab (benign race).
// ============================================================================
static inline bool ss_tier_is_hot(SuperSlab* ss) {
if (!ss) return false;
uint8_t tier = atomic_load_explicit(&ss->tier, memory_order_relaxed);
return (tier == SS_TIER_HOT);
}
// ============================================================================
// 5. Tier Force-Set (Testing/Debug Only)
// ============================================================================
//
// Directly sets the tier without utilization checks.
//
// WARNING: This bypasses all transition logic and should ONLY be used for:
// - Unit tests
// - Debug/instrumentation
// - Initialization (setting fresh SuperSlab to HOT)
//
// Do NOT use in production hot paths.
//
// Memory Order: Release ensures any prior modifications are visible after
// the tier change is observed by other threads.
// ============================================================================
static inline void ss_tier_set(SuperSlab* ss, SSTier tier) {
if (!ss) return;
// Validate tier value (defensive)
if (tier != SS_TIER_HOT && tier != SS_TIER_DRAINING && tier != SS_TIER_FREE) {
return; // Invalid tier, refuse to set
}
atomic_store_explicit(&ss->tier, (uint8_t)tier, memory_order_release);
}
#endif // HAK_SS_TIER_BOX_H