Files
hakmem/core/superslab_backend.c
Moe Charm (CI) 6ac6f5ae1b Refactor: Split hakmem_tiny_superslab.c + unified backend exit point
Major refactoring to improve maintainability and debugging:

1. Split hakmem_tiny_superslab.c (1521 lines) into 7 focused files:
   - superslab_allocate.c: SuperSlab allocation/deallocation
   - superslab_backend.c: Backend allocation paths (legacy, shared)
   - superslab_ace.c: ACE (Adaptive Cache Engine) logic
   - superslab_slab.c: Slab initialization and bitmap management
   - superslab_cache.c: LRU cache and prewarm cache management
   - superslab_head.c: SuperSlabHead management and expansion
   - superslab_stats.c: Statistics tracking and debugging

2. Created hakmem_tiny_superslab_internal.h for shared declarations

3. Added superslab_return_block() as single exit point for header writing:
   - All backend allocations now go through this helper
   - Prevents bugs where headers are forgotten in some paths
   - Makes future debugging easier

4. Updated Makefile for new file structure

5. Added header writing to ss_legacy_backend_box.c and
   ss_unified_backend_box.c (though not currently linked)

Note: Header corruption bug in Larson benchmark still exists.
Class 1-6 allocations go through TLS refill/carve paths, not backend.
Further investigation needed.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-29 05:13:04 +09:00

282 lines
11 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// superslab_backend.c - Backend allocation paths for SuperSlab allocator
// Purpose: Legacy and shared pool backend implementations
// License: MIT
// Date: 2025-11-28
#include "hakmem_tiny_superslab_internal.h"
/*
* superslab_return_block() - Single exit point for all SuperSlab allocations
*
* Purpose: Ensures consistent header writing across all allocation paths.
* This prevents bugs where headers are written in some paths but not others.
*
* Parameters:
* base - Block start address from SuperSlab geometry
* class_idx - Tiny class index (0-7)
*
* Returns:
* User pointer (base + 1 if headers enabled, base otherwise)
*
* Header writing behavior:
* - If HAKMEM_TINY_HEADER_CLASSIDX=1: Writes header via tiny_region_id_write_header()
* - If HAKMEM_TINY_HEADER_CLASSIDX=0: Returns base directly (no header)
*/
static inline void* superslab_return_block(void* base, int class_idx) {
#if HAKMEM_TINY_HEADER_CLASSIDX
return tiny_region_id_write_header(base, class_idx);
#else
return (void*)base;
#endif
}
/*
* Legacy backend for hak_tiny_alloc_superslab_box().
*
* Phase 12 Stage A/B:
* - Uses per-class SuperSlabHead (g_superslab_heads) as the implementation.
* - Callers MUST use hak_tiny_alloc_superslab_box() and never touch this directly.
* - Later Stage C: this function will be replaced by a shared_pool backend.
*/
void* hak_tiny_alloc_superslab_backend_legacy(int class_idx)
{
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) {
return NULL;
}
SuperSlabHead* head = g_superslab_heads[class_idx];
if (!head) {
head = init_superslab_head(class_idx);
if (!head) {
return NULL;
}
g_superslab_heads[class_idx] = head;
}
SuperSlab* chunk = head->current_chunk ? head->current_chunk : head->first_chunk;
while (chunk) {
int cap = ss_slabs_capacity(chunk);
for (int slab_idx = 0; slab_idx < cap; slab_idx++) {
TinySlabMeta* meta = &chunk->slabs[slab_idx];
// Skip slabs that belong to a different class (or are uninitialized).
if (meta->class_idx != (uint8_t)class_idx && meta->class_idx != 255) {
continue;
}
// P1.2 FIX: Initialize slab on first use (like shared backend does)
// This ensures class_map is populated for all slabs, not just slab 0
if (meta->capacity == 0) {
size_t block_size = g_tiny_class_sizes[class_idx];
uint32_t owner_tid = (uint32_t)(uintptr_t)pthread_self();
superslab_init_slab(chunk, slab_idx, block_size, owner_tid);
meta = &chunk->slabs[slab_idx]; // Refresh pointer after init
meta->class_idx = (uint8_t)class_idx;
// P1.2: Update class_map for dynamic slab initialization
chunk->class_map[slab_idx] = (uint8_t)class_idx;
}
if (meta->used < meta->capacity) {
size_t stride = tiny_block_stride_for_class(class_idx);
size_t offset = (size_t)meta->used * stride;
uint8_t* base = (uint8_t*)chunk
+ SUPERSLAB_SLAB0_DATA_OFFSET
+ (size_t)slab_idx * SUPERSLAB_SLAB_USABLE_SIZE
+ offset;
meta->used++;
atomic_fetch_add_explicit(&chunk->total_active_blocks, 1, memory_order_relaxed);
return superslab_return_block(base, class_idx);
}
}
chunk = chunk->next_chunk;
}
if (expand_superslab_head(head) < 0) {
return NULL;
}
SuperSlab* new_chunk = head->current_chunk;
if (!new_chunk) {
return NULL;
}
int cap2 = ss_slabs_capacity(new_chunk);
for (int slab_idx = 0; slab_idx < cap2; slab_idx++) {
TinySlabMeta* meta = &new_chunk->slabs[slab_idx];
// P1.2 FIX: Initialize slab on first use (like shared backend does)
if (meta->capacity == 0) {
size_t block_size = g_tiny_class_sizes[class_idx];
uint32_t owner_tid = (uint32_t)(uintptr_t)pthread_self();
superslab_init_slab(new_chunk, slab_idx, block_size, owner_tid);
meta = &new_chunk->slabs[slab_idx]; // Refresh pointer after init
meta->class_idx = (uint8_t)class_idx;
// P1.2: Update class_map for dynamic slab initialization
new_chunk->class_map[slab_idx] = (uint8_t)class_idx;
}
if (meta->used < meta->capacity) {
size_t stride = tiny_block_stride_for_class(class_idx);
size_t offset = (size_t)meta->used * stride;
uint8_t* base = (uint8_t*)new_chunk
+ SUPERSLAB_SLAB0_DATA_OFFSET
+ (size_t)slab_idx * SUPERSLAB_SLAB_USABLE_SIZE
+ offset;
meta->used++;
atomic_fetch_add_explicit(&new_chunk->total_active_blocks, 1, memory_order_relaxed);
return superslab_return_block(base, class_idx);
}
}
return NULL;
}
/*
* Shared pool backend for hak_tiny_alloc_superslab_box().
*
* Phase 12-2:
* - Uses SharedSuperSlabPool (g_shared_pool) to obtain a SuperSlab/slab
* for the requested class_idx.
* - This backend EXPRESSLY owns only:
* - choosing (ss, slab_idx) via shared_pool_acquire_slab()
* - initializing that slab's TinySlabMeta via superslab_init_slab()
* and nothing else; all callers must go through hak_tiny_alloc_superslab_box().
*
* - For now this is a minimal, conservative implementation:
* - One linear bump-run is carved from the acquired slab using tiny_block_stride_for_class().
* - No complex per-slab freelist or refill policy yet (Phase 12-3+).
* - If shared_pool_acquire_slab() fails, we fall back to legacy backend.
*/
void* hak_tiny_alloc_superslab_backend_shared(int class_idx)
{
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) {
return NULL;
}
SuperSlab* ss = NULL;
int slab_idx = -1;
if (shared_pool_acquire_slab(class_idx, &ss, &slab_idx) != 0 || !ss) {
// Shared pool could not provide a slab; caller may choose to fall back.
return NULL;
}
TinySlabMeta* meta = &ss->slabs[slab_idx];
// Defensive: shared_pool must either hand us an UNASSIGNED slab or one
// already bound to this class. Anything else is a hard bug.
if (meta->class_idx != 255 && meta->class_idx != (uint8_t)class_idx) {
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr,
"[HAKMEM][SS_SHARED] BUG: acquire_slab mismatch: cls=%d meta->class_idx=%u slab_idx=%d ss=%p\n",
class_idx, (unsigned)meta->class_idx, slab_idx, (void*)ss);
#endif
return NULL;
}
// Initialize slab geometry once for this class.
if (meta->capacity == 0) {
size_t block_size = g_tiny_class_sizes[class_idx];
// LARSON FIX: Pass actual thread ID for cross-thread free detection
uint32_t my_tid = (uint32_t)(uintptr_t)pthread_self();
superslab_init_slab(ss, slab_idx, block_size, my_tid);
meta = &ss->slabs[slab_idx];
// CRITICAL FIX: Always set class_idx after init to avoid C0/C7 confusion.
// New SuperSlabs start with meta->class_idx=0 (mmap zero-init).
// Must explicitly set to requested class, not just when class_idx==255.
meta->class_idx = (uint8_t)class_idx;
// P1.1: Update class_map in shared acquire path
ss->class_map[slab_idx] = (uint8_t)class_idx;
}
// Final contract check before computing addresses.
if (meta->class_idx != (uint8_t)class_idx ||
meta->capacity == 0 ||
meta->used > meta->capacity) {
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr,
"[HAKMEM][SS_SHARED] BUG: invalid slab meta before alloc: "
"cls=%d slab_idx=%d meta_cls=%u used=%u cap=%u ss=%p\n",
class_idx, slab_idx,
(unsigned)meta->class_idx,
(unsigned)meta->used,
(unsigned)meta->capacity,
(void*)ss);
#endif
return NULL;
}
// Simple bump allocation within this slab.
if (meta->used >= meta->capacity) {
// Slab exhausted: in minimal Phase12-2 backend we do not loop;
// caller or future logic must acquire another slab.
return NULL;
}
size_t stride = tiny_block_stride_for_class(class_idx);
size_t offset = (size_t)meta->used * stride;
// Phase 12-2 minimal geometry:
// - slab 0 data offset via SUPERSLAB_SLAB0_DATA_OFFSET
// - subsequent slabs at fixed SUPERSLAB_SLAB_USABLE_SIZE strides.
size_t slab_base_off = SUPERSLAB_SLAB0_DATA_OFFSET
+ (size_t)slab_idx * SUPERSLAB_SLAB_USABLE_SIZE;
uint8_t* base = (uint8_t*)ss + slab_base_off + offset;
meta->used++;
atomic_fetch_add_explicit(&ss->total_active_blocks, 1, memory_order_relaxed);
return superslab_return_block(base, class_idx);
}
/*
* Box API entry:
* - Single front-door for tiny-side Superslab allocations.
*
* Phase 12 policy:
* - HAKMEM_TINY_SS_SHARED=0 → legacy backendのみ回帰確認用
* - HAKMEM_TINY_SS_SHARED=1 → shared backendを優先し、失敗時のみ legacy にフォールバック
*/
void* hak_tiny_alloc_superslab_box(int class_idx)
{
static int g_ss_shared_mode = -1;
static _Atomic uint32_t g_ss_backend_log = 0;
if (__builtin_expect(g_ss_shared_mode == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_SS_SHARED");
if (!e || !*e) {
g_ss_shared_mode = 1; // デフォルト: shared 有効
} else {
int v = atoi(e);
g_ss_shared_mode = (v != 0) ? 1 : 0;
}
}
if (g_ss_shared_mode == 1) {
void* p = hak_tiny_alloc_superslab_backend_shared(class_idx);
if (p != NULL) {
uint32_t n = atomic_fetch_add_explicit(&g_ss_backend_log, 1, memory_order_relaxed);
if (n < 4) {
fprintf(stderr, "[SS_BACKEND] shared cls=%d ptr=%p\n", class_idx, p);
}
return p;
}
// shared backend が失敗した場合は安全側で legacy にフォールバック
uint32_t n = atomic_fetch_add_explicit(&g_ss_backend_log, 1, memory_order_relaxed);
if (n < 4) {
fprintf(stderr, "[SS_BACKEND] shared_fail→legacy cls=%d\n", class_idx);
}
return hak_tiny_alloc_superslab_backend_legacy(class_idx);
}
// shared OFF 時は legacy のみ
uint32_t n = atomic_fetch_add_explicit(&g_ss_backend_log, 1, memory_order_relaxed);
if (n < 4) {
fprintf(stderr, "[SS_BACKEND] legacy cls=%d\n", class_idx);
}
return hak_tiny_alloc_superslab_backend_legacy(class_idx);
}