Implement TinyHeapV2 as a minimal "lucky hit" L0 cache that avoids circular dependency with FastCache by eliminating self-refill. Key Changes: - New: core/front/tiny_heap_v2.h - NO-REFILL L0 cache implementation - tiny_heap_v2_alloc(): Pop from magazine if available, else return NULL - tiny_heap_v2_refill_mag(): No-op stub (no backend refill) - ENV: HAKMEM_TINY_HEAP_V2=1 to enable - ENV: HAKMEM_TINY_HEAP_V2_CLASS_MASK=bitmask (C0-C3 control) - ENV: HAKMEM_TINY_HEAP_V2_STATS=1 to print statistics - Modified: core/hakmem_tiny_alloc_new.inc - Add TinyHeapV2 hook - Hook at entry point (after class_idx calculation) - Fallback to existing front if TinyHeapV2 returns NULL - Modified: core/hakmem_tiny_alloc.inc - Add hook for legacy path - Modified: core/hakmem_tiny.c - Add TLS variables and stats wrapper - TinyHeapV2Mag: Per-class magazine (capacity=16) - TinyHeapV2Stats: Per-class counters (alloc_calls, mag_hits, etc.) - tiny_heap_v2_print_stats(): Statistics output at exit - New: TINY_HEAP_V2_TASK_SPEC.md - Phase 13 specification Root Cause Fixed: - BEFORE: TinyHeapV2 refilled from FastCache → circular dependency - TinyHeapV2 intercepted all allocs → FastCache never populated - Result: 100% backend OOM, 0% hit rate, 99% slowdown - AFTER: TinyHeapV2 is passive L0 cache (no refill) - Magazine empty → return NULL → existing front handles it - Result: 0% overhead, stable baseline performance A/B Test Results (100K iterations, fixed-size bench): - C1 (8B): Baseline 9,688 ops/s → HeapV2 ON 9,762 ops/s (+0.76%) - C2 (16B): Baseline 9,804 ops/s → HeapV2 ON 9,845 ops/s (+0.42%) - C3 (32B): Baseline 9,840 ops/s → HeapV2 ON 9,814 ops/s (-0.26%) - All within noise range: NO PERFORMANCE REGRESSION ✅ Statistics (HeapV2 ON, C1-C3): - alloc_calls: 200K (hook works correctly) - mag_hits: 0 (0%) - Magazine empty as expected - refill_calls: 0 - No refill executed (circular dependency avoided) - backend_oom: 0 - No backend access Next Steps (Phase 13-A Step 2): - Implement magazine supply strategy (from existing front or free path) - Goal: Populate magazine with "leftover" blocks from existing pipeline 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
342 lines
14 KiB
C++
342 lines
14 KiB
C++
// hakmem_tiny_alloc_new.inc
|
||
// New 3-layer Tiny Pool allocation (simplified)
|
||
//
|
||
// Purpose: Reduce from 6-7 layers to 3 layers
|
||
// Target: 100+ instructions/op → 20-30 instructions/op
|
||
//
|
||
// Part of 3-layer architecture simplification (2025-11-01)
|
||
// Based on ChatGPT Pro UltraThink recommendations
|
||
|
||
// === IMPORTANT: Disable old benchmark fastpath ===
|
||
// The old HAKMEM_TINY_BENCH_FASTPATH conflicts with new 3-layer architecture
|
||
// We must disable it to ensure our new code runs
|
||
#ifdef HAKMEM_TINY_BENCH_FASTPATH
|
||
#undef HAKMEM_TINY_BENCH_FASTPATH
|
||
#endif
|
||
|
||
// Phase E1-CORRECT: Box API for next pointer operations
|
||
#include "box/tiny_next_ptr_box.h"
|
||
|
||
// Debug counters (thread-local)
|
||
static __thread uint64_t g_3layer_bump_hits = 0;
|
||
static __thread uint64_t g_3layer_mag_hits = 0;
|
||
static __thread uint64_t g_3layer_slow_hits = 0;
|
||
static __thread uint64_t g_3layer_refill_count = 0;
|
||
static __thread uint64_t g_3layer_refill_items = 0;
|
||
static __thread uint64_t g_3layer_fallback_superslab_disabled = 0;
|
||
static __thread uint64_t g_3layer_fallback_no_ss = 0;
|
||
static __thread uint64_t g_3layer_fallback_no_meta = 0;
|
||
static __thread uint64_t g_3layer_batch_carve_count = 0;
|
||
|
||
// Active accounting helper (env toggle: HAKMEM_TINY_ACTIVE_FIX=0 to disable)
|
||
static inline int tiny_active_fix_enabled(void) {
|
||
static int g_active_fix_en = -1;
|
||
if (__builtin_expect(g_active_fix_en == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_ACTIVE_FIX");
|
||
g_active_fix_en = (e && atoi(e) == 0) ? 0 : 1;
|
||
}
|
||
return g_active_fix_en;
|
||
}
|
||
|
||
static inline void tiny_active_account_alloc(void* ptr) {
|
||
if (!ptr || !g_use_superslab) return;
|
||
if (!tiny_active_fix_enabled()) return;
|
||
SuperSlab* ss = hak_super_lookup(ptr);
|
||
if (ss && ss->magic == SUPERSLAB_MAGIC) {
|
||
ss_active_inc(ss);
|
||
}
|
||
}
|
||
|
||
// Forward declaration for Layer 3
|
||
__attribute__((noinline, cold))
|
||
static void* tiny_alloc_slow_new(int class_idx);
|
||
|
||
// ============================================================================
|
||
// Main Allocation Function (3-layer architecture)
|
||
// ============================================================================
|
||
|
||
void* hak_tiny_alloc(size_t size) {
|
||
// Initialization check (cold path, once per thread)
|
||
#if !HAKMEM_BUILD_RELEASE
|
||
if (!g_tiny_initialized) hak_tiny_init();
|
||
#else
|
||
if (__builtin_expect(!g_tiny_initialized, 0)) {
|
||
hak_tiny_init();
|
||
}
|
||
#endif
|
||
|
||
// Wrapper guard (safety check, rare)
|
||
#if !HAKMEM_BUILD_RELEASE
|
||
# if HAKMEM_WRAPPER_TLS_GUARD
|
||
if (!g_wrap_tiny_enabled && __builtin_expect(g_tls_in_wrapper != 0, 0)) return NULL;
|
||
# else
|
||
extern int hak_in_wrapper(void);
|
||
if (!g_wrap_tiny_enabled && __builtin_expect(hak_in_wrapper() != 0, 0)) return NULL;
|
||
# endif
|
||
#endif
|
||
|
||
// Size to class index
|
||
int class_idx = hak_tiny_size_to_class(size);
|
||
if (class_idx < 0) return NULL; // > 1KB
|
||
|
||
// DEBUG: Verify hak_tiny_alloc() is called
|
||
static int g_alloc_dbg = -1;
|
||
if (g_alloc_dbg == -1) {
|
||
const char* e = getenv("HAKMEM_TINY_HEAP_V2_DEBUG");
|
||
g_alloc_dbg = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
if (g_alloc_dbg) {
|
||
static int g_call_count = 0;
|
||
if (g_call_count < 3) {
|
||
fprintf(stderr, "[HAK_TINY_ALLOC] Called #%d, size=%zu, class=%d\n",
|
||
g_call_count++, size, class_idx);
|
||
}
|
||
}
|
||
|
||
// Route fingerprint begin (debug-only; no-op unless HAKMEM_ROUTE=1)
|
||
ROUTE_BEGIN(class_idx);
|
||
|
||
// Phase 13-A: Tiny Heap v2 (per-thread heap, experimental)
|
||
// ENV-gated: HAKMEM_TINY_HEAP_V2=1
|
||
// Targets class 0-3 (8-64B) only, falls back to existing path if NULL
|
||
if (__builtin_expect(tiny_heap_v2_enabled(), 0) && class_idx <= 3) {
|
||
static int g_heap_v2_dbg = -1;
|
||
if (g_heap_v2_dbg == -1) {
|
||
const char* e = getenv("HAKMEM_TINY_HEAP_V2_DEBUG");
|
||
g_heap_v2_dbg = (e && *e && *e != '0') ? 1 : 0;
|
||
}
|
||
if (g_heap_v2_dbg) {
|
||
static int g_hook_count = 0;
|
||
if (g_hook_count < 5) {
|
||
fprintf(stderr, "[NEW3L-HOOK] class_idx=%d, size=%zu, hook_count=%d\n",
|
||
class_idx, size, g_hook_count++);
|
||
}
|
||
}
|
||
void* base = tiny_heap_v2_alloc(size);
|
||
if (base) {
|
||
HAK_RET_ALLOC(class_idx, base); // Header write + return USER pointer
|
||
}
|
||
// Fall through to existing front path if HeapV2 returned NULL (disabled class or OOM)
|
||
}
|
||
|
||
// Initialize small magazine (once per thread)
|
||
if (__builtin_expect(!g_tiny_small_mag_initialized, 0)) {
|
||
tiny_small_mag_init();
|
||
}
|
||
|
||
// ========================================================================
|
||
// === LAYER 1: TLS Bump Allocator (hot classes 0-2: 8B/16B/32B) ===
|
||
// === Target: 2-3 instructions/op ===
|
||
// ========================================================================
|
||
if (likely(class_idx <= 2)) {
|
||
void* p = tiny_bump_alloc(class_idx);
|
||
if (likely(p)) {
|
||
tiny_active_account_alloc(p);
|
||
g_3layer_bump_hits++;
|
||
// Mark: bump hit(便宜的にhot_hitのbitを再利用 8)
|
||
ROUTE_MARK(8); ROUTE_COMMIT(class_idx, 0x40);
|
||
HAK_RET_ALLOC(class_idx, p);
|
||
}
|
||
}
|
||
|
||
// ========================================================================
|
||
// === LAYER 2: TLS Small Magazine (all classes, 128 items) ===
|
||
// === Target: 5-10 instructions/op ===
|
||
// ========================================================================
|
||
void* p = small_mag_pop(class_idx);
|
||
if (likely(p)) {
|
||
extern unsigned long long g_front_mag_hit[];
|
||
g_front_mag_hit[class_idx]++;
|
||
tiny_active_account_alloc(p);
|
||
g_3layer_mag_hits++;
|
||
// Mark: small mag hit(bench_hitのbitを便宜的に再利用 10)
|
||
ROUTE_MARK(10); ROUTE_COMMIT(class_idx, 0x41);
|
||
HAK_RET_ALLOC(class_idx, p);
|
||
}
|
||
|
||
// ========================================================================
|
||
// === LAYER 3: Slow path (refill, slab allocation) ===
|
||
// === Target: 50-100+ instructions/op (rare) ===
|
||
// ========================================================================
|
||
g_3layer_slow_hits++;
|
||
return tiny_alloc_slow_new(class_idx);
|
||
}
|
||
|
||
// ============================================================================
|
||
// Layer 3: Slow Path (refill and slab management)
|
||
// ============================================================================
|
||
|
||
__attribute__((noinline, cold))
|
||
static void* tiny_alloc_slow_new(int class_idx) {
|
||
// Return‑First Selector: try Ready/Mailbox/Sticky/Hot/Bench/Registry once
|
||
do {
|
||
static int g_return_first = -1; // env: HAKMEM_TINY_RETURN_FIRST (default ON)
|
||
if (__builtin_expect(g_return_first == -1, 0)) {
|
||
const char* e = getenv("HAKMEM_TINY_RETURN_FIRST");
|
||
g_return_first = (e && *e == '0') ? 0 : 1;
|
||
}
|
||
if (__builtin_expect(g_return_first, 1)) {
|
||
extern __thread TinyTLSSlab g_tls_slabs[];
|
||
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
|
||
SuperSlab* rs = tiny_refill_try_fast(class_idx, tls);
|
||
(void)rs; // On success, tls->ss is bound and Step 2 will carve
|
||
}
|
||
} while (0);
|
||
|
||
// ========================================================================
|
||
// Layer 3: Refill Small Magazine and/or Bump from existing infrastructure
|
||
// ========================================================================
|
||
|
||
// Step 1: Try to refill Small Magazine from existing TLS Magazine
|
||
tiny_mag_init_if_needed(class_idx);
|
||
TinyTLSMag* large_mag = &g_tls_mags[class_idx];
|
||
|
||
if (large_mag->top > 0) {
|
||
// Batch transfer from large magazine (2048) to small magazine
|
||
int batch_size = 64; // Transfer in batches of 64
|
||
if (batch_size > large_mag->top) batch_size = large_mag->top;
|
||
|
||
void* items[64];
|
||
for (int i = 0; i < batch_size; i++) {
|
||
items[i] = large_mag->items[large_mag->top - 1 - i].ptr;
|
||
}
|
||
large_mag->top -= batch_size;
|
||
|
||
// Push to Small Magazine
|
||
int pushed = small_mag_batch_push(class_idx, items, batch_size);
|
||
g_3layer_refill_count++;
|
||
g_3layer_refill_items += pushed;
|
||
|
||
// Try to pop one and return
|
||
void* p = small_mag_pop(class_idx);
|
||
if (p) {
|
||
tiny_active_account_alloc(p);
|
||
return p;
|
||
}
|
||
}
|
||
|
||
// Step 2: Large Magazine empty - batch carve from SuperSlab directly
|
||
// ChatGPT Pro P0: Complete batch化 (based on tls_refill_from_tls_slab:115-126)
|
||
if (!g_use_superslab) {
|
||
g_3layer_fallback_superslab_disabled++;
|
||
return hak_tiny_alloc_slow(0, class_idx);
|
||
}
|
||
|
||
TinyTLSSlab* tls_slab = &g_tls_slabs[class_idx];
|
||
if (!tls_slab->ss) {
|
||
if (superslab_refill(class_idx) == NULL) {
|
||
g_3layer_fallback_no_ss++;
|
||
// Optional one-shot debug
|
||
static int g_alloc_dbg = -1; if (__builtin_expect(g_alloc_dbg == -1, 0)) { const char* e=getenv("HAKMEM_TINY_ALLOC_DEBUG"); g_alloc_dbg = (e && atoi(e)!=0)?1:0; }
|
||
if (g_alloc_dbg) {
|
||
static _Atomic int printed_ss[8]; int exp=0;
|
||
if (atomic_compare_exchange_strong(&printed_ss[class_idx], &exp, 1)) {
|
||
fprintf(stderr, "[ALLOC3] refill returned NULL (no SS) class=%d\n", class_idx);
|
||
}
|
||
}
|
||
return hak_tiny_alloc_slow(0, class_idx); // Fallback
|
||
}
|
||
}
|
||
|
||
TinySlabMeta* meta = tls_slab->meta;
|
||
if (!meta) {
|
||
g_3layer_fallback_no_meta++;
|
||
// Optional one-shot debug
|
||
static int g_alloc_dbg2 = -1; if (__builtin_expect(g_alloc_dbg2 == -1, 0)) { const char* e=getenv("HAKMEM_TINY_ALLOC_DEBUG"); g_alloc_dbg2 = (e && atoi(e)!=0)?1:0; }
|
||
if (g_alloc_dbg2) {
|
||
static _Atomic int printed_meta[8]; int exp=0;
|
||
if (atomic_compare_exchange_strong(&printed_meta[class_idx], &exp, 1)) {
|
||
fprintf(stderr, "[ALLOC3] meta is NULL after refill class=%d\n", class_idx);
|
||
}
|
||
}
|
||
return hak_tiny_alloc_slow(0, class_idx);
|
||
}
|
||
|
||
// Batch carve from SuperSlab (P0 optimization - no 64x function calls!)
|
||
uint32_t want = 64; // Refill target
|
||
void* items[64];
|
||
int got = 0;
|
||
|
||
// Try freelist first (small amount, usually 0)
|
||
while (got < (int)want && meta->freelist) {
|
||
void* node = meta->freelist;
|
||
meta->freelist = tiny_next_read(node); // Phase E1-CORRECT: Box API
|
||
items[got++] = node;
|
||
meta->used++;
|
||
}
|
||
|
||
// Then linear carve (KEY OPTIMIZATION - direct array fill!)
|
||
if (got < (int)want && meta->used < meta->capacity) {
|
||
uint32_t need = want - got;
|
||
uint32_t available = meta->capacity - meta->used;
|
||
if (need > available) need = available;
|
||
|
||
size_t block_size = g_tiny_class_sizes[class_idx];
|
||
uint8_t* slab_base = tls_slab->slab_base ? tls_slab->slab_base
|
||
: tiny_slab_base_for(tls_slab->ss, tls_slab->slab_idx);
|
||
uint8_t* cursor = slab_base + ((size_t)meta->used * block_size);
|
||
|
||
// Batch carve: directly fill items array (no linked list, no 64 function calls!)
|
||
for (uint32_t i = 0; i < need; ++i) {
|
||
items[got++] = (void*)cursor;
|
||
cursor += block_size;
|
||
}
|
||
|
||
meta->used += need; // Reserve to TLS; not active until returned to user
|
||
}
|
||
|
||
if (got == 0) {
|
||
// Slab exhausted, try refill and retry once
|
||
if (superslab_refill(class_idx) != NULL) {
|
||
return tiny_alloc_slow_new(class_idx); // Recursive retry
|
||
}
|
||
static int g_alloc_dbg3 = -1; if (__builtin_expect(g_alloc_dbg3 == -1, 0)) { const char* e=getenv("HAKMEM_TINY_ALLOC_DEBUG"); g_alloc_dbg3 = (e && atoi(e)!=0)?1:0; }
|
||
if (g_alloc_dbg3) {
|
||
static _Atomic int printed_final[8]; int exp=0;
|
||
if (atomic_compare_exchange_strong(&printed_final[class_idx], &exp, 1)) {
|
||
fprintf(stderr, "[ALLOC3] no items after retry (final fallback) class=%d\n", class_idx);
|
||
}
|
||
}
|
||
return hak_tiny_alloc_slow(0, class_idx); // Ultimate fallback
|
||
}
|
||
|
||
// Take one for return, push rest to Small Magazine
|
||
g_3layer_batch_carve_count++;
|
||
void* result = items[0];
|
||
if (got > 1) {
|
||
int pushed = small_mag_batch_push(class_idx, &items[1], got - 1);
|
||
g_3layer_refill_count++;
|
||
g_3layer_refill_items += pushed;
|
||
}
|
||
|
||
tiny_active_account_alloc(result);
|
||
// Route: slab carve direct(linear相当の採用扱い)
|
||
ROUTE_MARK(11); ROUTE_COMMIT(class_idx, 0x60);
|
||
return result;
|
||
}
|
||
|
||
// Debug function: print layer statistics
|
||
__attribute__((destructor))
|
||
static void print_3layer_stats(void) {
|
||
uint64_t total = g_3layer_bump_hits + g_3layer_mag_hits + g_3layer_slow_hits;
|
||
if (total > 0) {
|
||
fprintf(stderr, "\n=== 3-Layer Architecture Stats ===\n");
|
||
fprintf(stderr, "Bump hits: %10lu (%5.2f%%)\n",
|
||
g_3layer_bump_hits, 100.0 * g_3layer_bump_hits / total);
|
||
fprintf(stderr, "Mag hits: %10lu (%5.2f%%)\n",
|
||
g_3layer_mag_hits, 100.0 * g_3layer_mag_hits / total);
|
||
fprintf(stderr, "Slow hits: %10lu (%5.2f%%)\n",
|
||
g_3layer_slow_hits, 100.0 * g_3layer_slow_hits / total);
|
||
fprintf(stderr, "Total allocs: %10lu\n", total);
|
||
fprintf(stderr, "Refill count: %10lu\n", g_3layer_refill_count);
|
||
fprintf(stderr, "Refill items: %10lu (avg %.1f/refill)\n",
|
||
g_3layer_refill_items,
|
||
g_3layer_refill_count > 0 ? (double)g_3layer_refill_items / g_3layer_refill_count : 0.0);
|
||
fprintf(stderr, "=== Fallback Paths ===\n");
|
||
fprintf(stderr, "SuperSlab disabled: %lu\n", g_3layer_fallback_superslab_disabled);
|
||
fprintf(stderr, "No SuperSlab: %lu\n", g_3layer_fallback_no_ss);
|
||
fprintf(stderr, "No meta: %lu\n", g_3layer_fallback_no_meta);
|
||
fprintf(stderr, "Batch carve count: %lu\n", g_3layer_batch_carve_count);
|
||
}
|
||
}
|