Files
hakmem/core/box/ss_os_acquire_box.h
Moe Charm (CI) 7adbcdfcb6 Phase 54-60: Memory-Lean mode, Balanced mode stabilization, M1 (50%) achievement
## Summary

Completed Phase 54-60 optimization work:

**Phase 54-56: Memory-Lean mode (LEAN+OFF prewarm suppression)**
- Implemented ss_mem_lean_env_box.h with ENV gates
- Balanced mode (LEAN+OFF) promoted as production default
- Result: +1.2% throughput, better stability, zero syscall overhead
- Added to bench_profile.h: MIXED_TINYV3_C7_BALANCED preset

**Phase 57: 60-min soak finalization**
- Balanced mode: 60-min soak, RSS drift 0%, CV 5.38%
- Speed-first mode: 60-min soak, RSS drift 0%, CV 1.58%
- Syscall budget: 1.25e-7/op (800× under target)
- Status: PRODUCTION-READY

**Phase 59: 50% recovery baseline rebase**
- hakmem FAST (Balanced): 59.184M ops/s, CV 1.31%
- mimalloc: 120.466M ops/s, CV 3.50%
- Ratio: 49.13% (M1 ACHIEVED within statistical noise)
- Superior stability: 2.68× better CV than mimalloc

**Phase 60: Alloc pass-down SSOT (NO-GO)**
- Implemented alloc_passdown_ssot_env_box.h
- Modified malloc_tiny_fast.h for SSOT pattern
- Result: -0.46% (NO-GO)
- Key lesson: SSOT not applicable where early-exit already optimized

## Key Metrics

- Performance: 49.13% of mimalloc (M1 effectively achieved)
- Stability: CV 1.31% (superior to mimalloc 3.50%)
- Syscall budget: 1.25e-7/op (excellent)
- RSS: 33MB stable, 0% drift over 60 minutes

## Files Added/Modified

New boxes:
- core/box/ss_mem_lean_env_box.h
- core/box/ss_release_policy_box.{h,c}
- core/box/alloc_passdown_ssot_env_box.h

Scripts:
- scripts/soak_mixed_single_process.sh
- scripts/analyze_epoch_tail_csv.py
- scripts/soak_mixed_rss.sh
- scripts/calculate_percentiles.py
- scripts/analyze_soak.py

Documentation: Phase 40-60 analysis documents

## Design Decisions

1. Profile separation (core/bench_profile.h):
   - MIXED_TINYV3_C7_SAFE: Speed-first (no LEAN)
   - MIXED_TINYV3_C7_BALANCED: Balanced mode (LEAN+OFF)

2. Box Theory compliance:
   - All ENV gates reversible (HAKMEM_SS_MEM_LEAN, HAKMEM_ALLOC_PASSDOWN_SSOT)
   - Single conversion points maintained
   - No physical deletions (compile-out only)

3. Lessons learned:
   - SSOT effective only where redundancy exists (Phase 60 showed limits)
   - Branch prediction extremely effective (~0 cycles for well-predicted branches)
   - Early-exit pattern valuable even when seemingly redundant

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-17 06:24:01 +09:00

162 lines
5.2 KiB
C

// ss_os_acquire_box.h - SuperSlab OS Memory Acquisition Box
// Purpose: Low-level OS memory allocation (mmap/munmap) for SuperSlabs
// Box Theory: Encapsulates platform-specific aligned memory allocation
//
// Responsibilities:
// - Aligned mmap allocation (2MB boundary)
// - OOM diagnostics and error reporting
// - Global mmap counters
//
// Dependencies: None (pure OS interface)
//
// License: MIT
// Date: 2025-11-19
#ifndef HAKMEM_SS_OS_ACQUIRE_BOX_H
#define HAKMEM_SS_OS_ACQUIRE_BOX_H
#include <stdint.h>
#include <stddef.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stdlib.h>
#include <sys/mman.h>
#include "madvise_guard_box.h"
// ============================================================================
// Global Counters (for debugging/diagnostics)
// ============================================================================
extern _Atomic uint64_t g_ss_mmap_count;
extern _Atomic uint64_t g_final_fallback_mmap_count;
extern _Atomic uint64_t g_ss_os_alloc_calls;
extern _Atomic uint64_t g_ss_os_free_calls;
extern _Atomic uint64_t g_ss_os_madvise_calls;
extern _Atomic uint64_t g_ss_os_madvise_fail_enomem;
extern _Atomic uint64_t g_ss_os_madvise_fail_other;
extern _Atomic uint64_t g_ss_os_huge_alloc_calls;
extern _Atomic uint64_t g_ss_os_huge_fail_calls;
extern _Atomic bool g_ss_madvise_disabled;
extern _Atomic uint64_t g_ss_lean_decommit_calls;
extern _Atomic uint64_t g_ss_lean_retire_calls;
static inline int ss_os_stats_enabled(void) {
static int g_ss_os_stats_enabled = -1;
if (__builtin_expect(g_ss_os_stats_enabled == -1, 0)) {
const char* e = getenv("HAKMEM_SS_OS_STATS");
g_ss_os_stats_enabled = (e && *e && *e != '0') ? 1 : 0;
}
return g_ss_os_stats_enabled;
}
static inline void ss_os_stats_record_alloc(void) {
if (!ss_os_stats_enabled()) {
return;
}
atomic_fetch_add_explicit(&g_ss_os_alloc_calls, 1, memory_order_relaxed);
}
static inline void ss_os_stats_record_free(void) {
if (!ss_os_stats_enabled()) {
return;
}
atomic_fetch_add_explicit(&g_ss_os_free_calls, 1, memory_order_relaxed);
}
static inline void ss_os_stats_record_madvise(void) {
if (!ss_os_stats_enabled()) {
return;
}
atomic_fetch_add_explicit(&g_ss_os_madvise_calls, 1, memory_order_relaxed);
}
static inline void ss_os_stats_record_lean_decommit(void) {
if (!ss_os_stats_enabled()) {
return;
}
atomic_fetch_add_explicit(&g_ss_lean_decommit_calls, 1, memory_order_relaxed);
}
static inline void ss_os_stats_record_lean_retire(void) {
if (!ss_os_stats_enabled()) {
return;
}
atomic_fetch_add_explicit(&g_ss_lean_retire_calls, 1, memory_order_relaxed);
}
// ============================================================================
// HugePage Experiment (research-only)
// ============================================================================
static inline int ss_os_huge_enabled(void) {
static int g_ss_os_huge_enabled = -1;
if (__builtin_expect(g_ss_os_huge_enabled == -1, 0)) {
const char* e = getenv("HAKMEM_SS_HUGEPAGE_EXPERIMENT");
g_ss_os_huge_enabled = (e && *e && *e != '0') ? 1 : 0;
}
return g_ss_os_huge_enabled;
}
// Parse HAKMEM_SS_HUGEPAGE_SIZE (only "2M" supported explicitly; otherwise
// falls back to default 2MB). This is intentionally soft/experimental.
static inline size_t ss_os_huge_size_bytes(void) {
static size_t g_huge_size = 0;
if (__builtin_expect(g_huge_size == 0, 0)) {
const char* e = getenv("HAKMEM_SS_HUGEPAGE_SIZE");
if (e && *e) {
char* end = NULL;
unsigned long long v = strtoull(e, &end, 0);
if (end && (*end == 'M' || *end == 'm')) {
v *= 1024ULL * 1024ULL;
}
if (v > 0) {
g_huge_size = (size_t)v;
}
}
if (g_huge_size == 0) {
g_huge_size = (size_t)(2ULL << 20); // default 2MB
}
}
return g_huge_size;
}
static inline void ss_os_stats_record_huge_alloc(void) {
if (!ss_os_stats_enabled()) {
return;
}
atomic_fetch_add_explicit(&g_ss_os_huge_alloc_calls, 1, memory_order_relaxed);
}
static inline void ss_os_stats_record_huge_fail(void) {
if (!ss_os_stats_enabled()) {
return;
}
atomic_fetch_add_explicit(&g_ss_os_huge_fail_calls, 1, memory_order_relaxed);
}
// ============================================================================
// OS Acquisition API
// ============================================================================
// Acquire aligned SuperSlab memory from OS via mmap
//
// Parameters:
// size_class: Size class index (0-7, for statistics)
// ss_size: SuperSlab size in bytes (e.g., 2^21 = 2MB)
// ss_mask: Alignment mask (ss_size - 1)
// populate: If true, use MAP_POPULATE to prefault pages
//
// Returns: Aligned pointer or NULL on OOM
//
// Guarantees:
// - Returns NULL on OOM (never crashes)
// - Returned pointer is aligned to ss_size boundary
// - Logs OOM once per process (not spammy)
// - Updates g_ss_mmap_count counter
//
// Thread-safe: Yes (no shared state mutations except atomic counters)
void* ss_os_acquire(uint8_t size_class, size_t ss_size, uintptr_t ss_mask, int populate);
#endif // HAKMEM_SS_OS_ACQUIRE_BOX_H