Files
hakmem/core/tiny_alloc_fast_inline.h
Moe Charm (CI) 25d963a4aa Code Cleanup: Remove false positives, redundant validations, and reduce verbose logging
Following the C7 stride upgrade fix (commit 23c0d9541), this commit performs
comprehensive cleanup to improve code quality and reduce debug noise.

## Changes

### 1. Disable False Positive Checks (tiny_nextptr.h)
- **Disabled**: NXT_MISALIGN validation block with `#if 0`
- **Reason**: Produces false positives due to slab base offsets (2048, 65536)
  not being stride-aligned, causing all blocks to appear "misaligned"
- **TODO**: Reimplement to check stride DISTANCE between consecutive blocks
  instead of absolute alignment to stride boundaries

### 2. Remove Redundant Geometry Validations

**hakmem_tiny_refill_p0.inc.h (P0 batch refill)**
- Removed 25-line CARVE_GEOMETRY_FIX validation block
- Replaced with NOTE explaining redundancy
- **Reason**: Stride table is now correct in tiny_block_stride_for_class(),
  defense-in-depth validation adds overhead without benefit

**ss_legacy_backend_box.c (legacy backend)**
- Removed 18-line LEGACY_FIX_GEOMETRY validation block
- Replaced with NOTE explaining redundancy
- **Reason**: Shared_pool validates geometry at acquisition time

### 3. Reduce Verbose Logging

**hakmem_shared_pool.c (sp_fix_geometry_if_needed)**
- Made SP_FIX_GEOMETRY logging conditional on `!HAKMEM_BUILD_RELEASE`
- **Reason**: Geometry fixes are expected during stride upgrades,
  no need to log in release builds

### 4. Verification
- Build:  Successful (LTO warnings expected)
- Test:  10K iterations (1.87M ops/s, no crashes)
- NXT_MISALIGN false positives:  Eliminated

## Files Modified
- core/tiny_nextptr.h - Disabled false positive NXT_MISALIGN check
- core/hakmem_tiny_refill_p0.inc.h - Removed redundant CARVE validation
- core/box/ss_legacy_backend_box.c - Removed redundant LEGACY validation
- core/hakmem_shared_pool.c - Made SP_FIX_GEOMETRY logging debug-only

## Impact
- **Code clarity**: Removed 43 lines of redundant validation code
- **Debug noise**: Reduced false positive diagnostics
- **Performance**: Eliminated overhead from redundant geometry checks
- **Maintainability**: Single source of truth for geometry validation

🧹 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-21 23:00:24 +09:00

174 lines
7.2 KiB
C

// tiny_alloc_fast_inline.h - Phase 7 Task 2: Aggressive inline TLS cache access
// Purpose: Eliminate function call overhead (5-10 cycles) in hot path
// Design: Macro-based inline expansion of TLS freelist operations
// Performance: Expected +10-15% (22M → 24-25M ops/s)
#ifndef TINY_ALLOC_FAST_INLINE_H
#define TINY_ALLOC_FAST_INLINE_H
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include "hakmem_build_flags.h"
#include "tiny_remote.h" // for TINY_REMOTE_SENTINEL (defense-in-depth)
#include "box/tiny_next_ptr_box.h" // Phase E1-CORRECT: unified next pointer API
#include "tiny_region_id.h" // For HEADER_MAGIC, HEADER_CLASS_MASK (Fix #7)
#include "box/tls_sll_box.h"
// External TLS variables (defined in hakmem_tiny.c)
// Phase 3d-B: TLS Cache Merge - Unified TLS SLL structure
extern __thread TinyTLSSLL g_tls_sll[TINY_NUM_CLASSES];
extern __thread const char* g_tls_sll_last_writer[TINY_NUM_CLASSES];
#ifndef TINY_NUM_CLASSES
#define TINY_NUM_CLASSES 8
#endif
// ========== Inline Macro: TLS Freelist Pop ==========
//
// Aggressive inline expansion of tiny_alloc_fast_pop()
// Saves: 5-10 cycles (function call overhead + register spilling)
//
// Assembly comparison (x86-64):
// Function call:
// push %rbx ; Save registers
// mov %edi, %ebx ; class_idx to %ebx
// call tiny_alloc_fast_pop ; Call (5-10 cycles overhead)
// pop %rbx ; Restore registers
// test %rax, %rax ; Check result
//
// Inline macro:
// mov g_tls_sll_head(%rdi), %rax ; Direct access (3-4 cycles)
// test %rax, %rax
// je .miss
// mov (%rax), %rdx
// mov %rdx, g_tls_sll_head(%rdi)
//
// Result: 5-10 fewer instructions, better register allocation
//
#define TINY_ALLOC_FAST_POP_INLINE(class_idx, ptr_out) do { \
extern int g_tls_sll_class_mask; \
if (__builtin_expect(((g_tls_sll_class_mask & (1u << (class_idx))) == 0), 0)) { \
(ptr_out) = NULL; \
break; \
} \
void* _head = g_tls_sll[(class_idx)].head; \
if (__builtin_expect(_head != NULL, 1)) { \
if (__builtin_expect((uintptr_t)_head == TINY_REMOTE_SENTINEL, 0)) { \
/* Break the chain defensively if sentinel leaked into TLS SLL */ \
g_tls_sll[(class_idx)].head = NULL; \
g_tls_sll_last_writer[(class_idx)] = "fast_pop_sentinel"; \
if (g_tls_sll[(class_idx)].count > 0) g_tls_sll[(class_idx)].count--; \
(ptr_out) = NULL; \
} else { \
/* Phase E1-CORRECT: Use Box API for next pointer read */ \
void* _next = tiny_next_read(class_idx, _head); \
if (__builtin_expect(class_idx == 4 || class_idx == 6, 0)) { \
tls_sll_diag_next(class_idx, _head, _next, "fast_pop_next"); \
} \
g_tls_sll[(class_idx)].head = _next; \
g_tls_sll_last_writer[(class_idx)] = "fast_pop"; \
if ((class_idx == 4 || class_idx == 6) && _next && ((uintptr_t)_next < 4096 || (uintptr_t)_next > 0x00007fffffffffffULL)) { \
static __thread uint8_t s_fast_pop_invalid_log[8] = {0}; \
if (s_fast_pop_invalid_log[(class_idx)] < 4) { \
fprintf(stderr, "[TLS_SLL_FAST_POP_INVALID] cls=%d head=%p next=%p\n", (class_idx), _head, _next); \
s_fast_pop_invalid_log[(class_idx)]++; \
} \
g_tls_sll[(class_idx)].head = NULL; \
/* keep count unchanged to flag drop */ \
g_tls_sll_last_writer[(class_idx)] = "fast_pop_post_invalid"; \
(ptr_out) = NULL; \
} else { \
if (g_tls_sll[(class_idx)].count > 0) { \
g_tls_sll[(class_idx)].count--; \
} \
/* Phase 7: Fast path returns BASE pointer; HAK_RET_ALLOC does BASE→USER */ \
(ptr_out) = _head; \
} \
} \
} else { \
(ptr_out) = NULL; \
} \
} while(0)
// ========== Inline Macro: TLS Freelist Push ==========
//
// Aggressive inline expansion of tiny_alloc_fast_push()
// Saves: 5-10 cycles (function call overhead)
//
// Assembly comparison:
// Function call:
// mov %rdi, %rsi ; ptr to %rsi
// mov %ebx, %edi ; class_idx to %edi
// call tiny_alloc_fast_push ; Call (5-10 cycles)
//
// Inline macro:
// mov g_tls_sll_head(%rdi), %rax ; Direct inline (2-3 cycles)
// mov %rax, (%rsi)
// mov %rsi, g_tls_sll_head(%rdi)
//
#if HAKMEM_TINY_HEADER_CLASSIDX
// Phase E1-CORRECT: Restore header on FREE for ALL classes (including C7)
// ROOT CAUSE: User may have overwritten byte 0 (header). tls_sll_splice() checks
// byte 0 for HEADER_MAGIC. Without restoration, it finds 0x00 → uses wrong offset → SEGV.
// COST: 1 byte write (~1-2 cycles per free, negligible).
#define TINY_ALLOC_FAST_PUSH_INLINE(class_idx, ptr) do { \
extern int g_tls_sll_class_mask; \
if (__builtin_expect(((g_tls_sll_class_mask & (1u << (class_idx))) == 0), 0)) { \
break; \
} \
if (!(ptr)) break; \
/* Phase E1-CORRECT: API ptr is USER pointer (= base+1). Convert back to BASE. */ \
uint8_t* _base = (uint8_t*)(ptr) - 1; \
/* Light header diag: alert if header already mismatched before we overwrite */ \
do { \
static _Atomic uint32_t g_fast_hdr_diag = 0; \
uint8_t _expect = HEADER_MAGIC | ((class_idx) & HEADER_CLASS_MASK); \
uint8_t _got = *_base; \
if (_got != _expect) { \
uint32_t _n = atomic_fetch_add_explicit(&g_fast_hdr_diag, 1, memory_order_relaxed); \
if (_n < 16) { \
fprintf(stderr, "[FAST_PUSH_HDR_MISMATCH] cls=%d base=%p got=0x%02x expect=0x%02x\n", (class_idx), _base, _got, _expect); \
} \
} \
} while (0); \
/* Restore header at BASE (not at user). */ \
*_base = HEADER_MAGIC | ((class_idx) & HEADER_CLASS_MASK); \
/* Link node using BASE as the canonical SLL node address. */ \
tiny_next_write((class_idx), _base, g_tls_sll[(class_idx)].head); \
g_tls_sll[(class_idx)].head = _base; \
g_tls_sll_last_writer[(class_idx)] = "fast_push"; \
g_tls_sll[(class_idx)].count++; \
} while(0)
#else
#define TINY_ALLOC_FAST_PUSH_INLINE(class_idx, ptr) do { \
tiny_next_write(class_idx, (ptr), g_tls_sll[(class_idx)].head); \
g_tls_sll[(class_idx)].head = (ptr); \
g_tls_sll_last_writer[(class_idx)] = "fast_push"; \
g_tls_sll[(class_idx)].count++; \
} while(0)
#endif
// ========== Performance Notes ==========
//
// Benchmark results (expected):
// - Random Mixed 128B: 21M → 23M ops/s (+10%)
// - Random Mixed 256B: 19M → 22M ops/s (+15%)
// - Larson 1T: 2.7M → 3.0M ops/s (+11%)
//
// Key optimizations:
// 1. No function call overhead (save 5-10 cycles)
// 2. Better register allocation (inline knows full context)
// 3. No stack frame setup/teardown
// 4. Compiler can optimize across macro boundaries
//
// Trade-offs:
// 1. Code size: +100-200 bytes (each call site expanded)
// 2. Debug visibility: Macros harder to step through
// 3. Maintenance: Changes must be kept in sync with function version
//
// Recommendation: Use inline macros for CRITICAL hot paths only
// (alloc/free fast path), keep functions for diagnostics/debugging
#endif // TINY_ALLOC_FAST_INLINE_H