Files
hakmem/core/front/tiny_unified_cache.h
Moe Charm (CI) 0c0d9c8c0b Unify Unified Cache API to BASE-only pointer type with Phantom typing
Core Changes:
- Modified: core/front/tiny_unified_cache.h
  * API signatures changed to use hak_base_ptr_t (Phantom type)
  * unified_cache_pop() returns hak_base_ptr_t (was void*)
  * unified_cache_push() accepts hak_base_ptr_t base (was void*)
  * unified_cache_pop_or_refill() returns hak_base_ptr_t (was void*)
  * Added #include "../box/ptr_type_box.h" for Phantom types

- Modified: core/front/tiny_unified_cache.c
  * unified_cache_refill() return type changed to hak_base_ptr_t
  * Uses HAK_BASE_FROM_RAW() for wrapping return values
  * Uses HAK_BASE_TO_RAW() for unwrapping parameters
  * Maintains internal void* storage in slots array

- Modified: core/box/tiny_front_cold_box.h
  * Uses hak_base_ptr_t from unified_cache_refill()
  * Uses hak_base_is_null() for NULL checks
  * Maintains tiny_user_offset() for BASE→USER conversion
  * Cold path refill integration updated to Phantom types

- Modified: core/front/malloc_tiny_fast.h
  * Free path wraps BASE pointer with HAK_BASE_FROM_RAW()
  * When pushing to Unified Cache via unified_cache_push()

Design Rationale:
- Unified Cache API now exclusively handles BASE pointers (no USER mixing)
- Phantom types enforce type distinction at compile time (debug mode)
- Zero runtime overhead in Release mode (macros expand to identity)
- Hot paths (tiny_hot_alloc_fast, tiny_hot_free_fast) remain unchanged
- Layout consistency maintained via tiny_user_offset() Box

Validation:
- All 25 Phantom type usage sites verified (25/25 correct)
- HAK_BASE_FROM_RAW(): 5/5 correct wrappings
- HAK_BASE_TO_RAW(): 1/1 correct unwrapping
- hak_base_is_null(): 4/4 correct NULL checks
- Compilation: RELEASE=0 and RELEASE=1 both successful
- Smoke tests: 3/3 passed (simple_alloc, loop 10M, pool_tls)

Type Safety Benefits:
- Prevents USER/BASE pointer confusion at API boundaries
- Compile-time checking in debug builds via Phantom struct
- Zero cost abstraction in release builds
- Clear intent: Unified Cache exclusively stores BASE pointers

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-12-04 12:20:21 +09:00

256 lines
10 KiB
C

// tiny_unified_cache.h - Phase 23: Unified Frontend Cache (tcache-style)
//
// Goal: Flatten 4-5 layer frontend cascade into single-layer array cache
// Target: +50-100% performance (20.3M → 30-40M ops/s)
//
// Design (Task-sensei analysis):
// - Replace: Ring → FastCache → SFC → TLS SLL (4 layers, 8-10 cache misses)
// - With: Single unified array cache per class (1 layer, 2-3 cache misses)
// - Fallback: Direct SuperSlab refill (skip intermediate layers)
//
// Performance:
// - Alloc: 2-3 cache misses (TLS access + array access)
// - Free: 2-3 cache misses (similar to System malloc tcache)
// - vs Current: 8-10 cache misses → 2-3 cache misses (70% reduction)
//
// ENV Variables:
// HAKMEM_TINY_UNIFIED_CACHE=1 # Enable Unified cache (default: 0, OFF)
// HAKMEM_TINY_UNIFIED_C0=128 # C0 cache size (default: 128)
// ...
// HAKMEM_TINY_UNIFIED_C7=128 # C7 cache size (default: 128)
#ifndef HAK_FRONT_TINY_UNIFIED_CACHE_H
#define HAK_FRONT_TINY_UNIFIED_CACHE_H
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "../hakmem_build_flags.h"
#include "../hakmem_tiny_config.h" // For TINY_NUM_CLASSES
#include "../box/ptr_type_box.h" // Phantom pointer types (BASE/USER)
#include "../box/tiny_front_config_box.h" // Phase 8-Step1: Config macros
// ============================================================================
// Unified Cache Structure (per class)
// ============================================================================
typedef struct {
// slots は BASE ポインタ群を保持する(ユーザポインタではない)。
// API では hak_base_ptr_t で型安全に扱い、内部表現は void* のまま。
void** slots; // Dynamic array of BASE pointers (allocated at init)
uint16_t head; // Pop index (consumer)
uint16_t tail; // Push index (producer)
uint16_t capacity; // Cache size (power of 2 for fast modulo: & (capacity-1))
uint16_t mask; // Capacity - 1 (for fast modulo)
} TinyUnifiedCache;
// ============================================================================
// External TLS Variables (defined in tiny_unified_cache.c)
// ============================================================================
extern __thread TinyUnifiedCache g_unified_cache[TINY_NUM_CLASSES];
// ============================================================================
// Metrics (Phase 23, optional for debugging)
// ============================================================================
#if !HAKMEM_BUILD_RELEASE
extern __thread uint64_t g_unified_cache_hit[TINY_NUM_CLASSES]; // Alloc hits
extern __thread uint64_t g_unified_cache_miss[TINY_NUM_CLASSES]; // Alloc misses
extern __thread uint64_t g_unified_cache_push[TINY_NUM_CLASSES]; // Free pushes
extern __thread uint64_t g_unified_cache_full[TINY_NUM_CLASSES]; // Free full (fallback to SuperSlab)
#endif
// ============================================================================
// ENV Control (cached, lazy init)
// ============================================================================
// Phase 8-Step1-Fix: Forward declaration only (implementation in .c file)
// Enable flag (default: 0, OFF) - implemented in tiny_unified_cache.c
int unified_cache_enabled(void);
// Per-class capacity (default: Hot_2048 strategy - optimized for 256B workload)
// Phase 23 Capacity Optimization Result: Hot_2048 = 14.63M ops/s (+43% vs baseline)
// Hot classes (C2/C3: 128B/256B) get 2048 slots, others get 64 slots
static inline size_t unified_capacity(int class_idx) {
static size_t g_cap[TINY_NUM_CLASSES] = {0};
if (__builtin_expect(g_cap[class_idx] == 0, 0)) {
char env_name[64];
snprintf(env_name, sizeof(env_name), "HAKMEM_TINY_UNIFIED_C%d", class_idx);
const char* e = getenv(env_name);
// Default: Hot_2048 strategy (C2/C3=2048, others=64)
size_t default_cap = 64; // Cold classes
if (class_idx == 2 || class_idx == 3) {
default_cap = 2048; // Hot classes (128B, 256B)
}
g_cap[class_idx] = (e && *e) ? (size_t)atoi(e) : default_cap;
// Round up to power of 2 (for fast modulo)
if (g_cap[class_idx] < 32) g_cap[class_idx] = 32;
if (g_cap[class_idx] > 4096) g_cap[class_idx] = 4096; // Increased limit for Hot_2048
// Ensure power of 2
size_t pow2 = 32;
while (pow2 < g_cap[class_idx]) pow2 *= 2;
g_cap[class_idx] = pow2;
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[Unified-INIT] C%d capacity = %zu (power of 2)\n", class_idx, g_cap[class_idx]);
fflush(stderr);
#endif
}
return g_cap[class_idx];
}
// ============================================================================
// Init/Shutdown Forward Declarations
// ============================================================================
void unified_cache_init(void);
void unified_cache_shutdown(void);
void unified_cache_print_stats(void);
// ============================================================================
// Phase 23-D: Self-Contained Refill (Box U1 + Box U2 integration)
// ============================================================================
// Batch refill from SuperSlab (called on cache miss)
// Returns: BASE pointer (first block), or NULL if failed
void* unified_cache_refill(int class_idx);
// ============================================================================
// Ultra-Fast Pop/Push (2-3 cache misses, tcache-style)
// ============================================================================
// Pop from unified cache (alloc fast path)
// Returns: BASE pointer (wrapped hak_base_ptr_t; callerがUSERへ変換)
static inline hak_base_ptr_t unified_cache_pop(int class_idx) {
// Phase 8-Step1: Use config macro for dead code elimination in PGO mode
// Fast path: Unified cache disabled → return NULL immediately
#include "../box/tiny_front_config_box.h"
if (__builtin_expect(!TINY_FRONT_UNIFIED_CACHE_ENABLED, 0))
return HAK_BASE_FROM_RAW(NULL);
TinyUnifiedCache* cache = &g_unified_cache[class_idx]; // 1 cache miss (TLS)
// Phase 8-Step3: Lazy init check (conditional in PGO mode)
// PGO builds assume bench_fast_init() prewarmed cache → remove check (-1 branch)
#if !HAKMEM_TINY_FRONT_PGO
// Lazy init check (once per thread, per class)
if (__builtin_expect(cache->slots == NULL, 0)) {
unified_cache_init(); // First call in this thread
// Re-check after init (may fail if allocation failed)
if (cache->slots == NULL)
return HAK_BASE_FROM_RAW(NULL);
}
#endif
// Empty check
if (__builtin_expect(cache->head == cache->tail, 0)) {
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_miss[class_idx]++;
#endif
return HAK_BASE_FROM_RAW(NULL); // Empty
}
// Pop from head (consumer)
void* base = cache->slots[cache->head]; // 1 cache miss (array access)
cache->head = (cache->head + 1) & cache->mask; // Fast modulo (power of 2)
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_hit[class_idx]++;
#endif
return HAK_BASE_FROM_RAW(base); // Return BASE pointer (2-3 cache misses total)
}
// Push to unified cache (free fast path)
// Input: BASE pointer (wrapped hak_base_ptr_t; caller must pass BASE, not USER)
// Returns: 1=SUCCESS, 0=FULL
static inline int unified_cache_push(int class_idx, hak_base_ptr_t base) {
// Phase 8-Step1: Use config macro for dead code elimination in PGO mode
// Fast path: Unified cache disabled → return 0 (not handled)
if (__builtin_expect(!TINY_FRONT_UNIFIED_CACHE_ENABLED, 0)) return 0;
TinyUnifiedCache* cache = &g_unified_cache[class_idx]; // 1 cache miss (TLS)
void* base_raw = HAK_BASE_TO_RAW(base);
// Phase 8-Step3: Lazy init check (conditional in PGO mode)
// PGO builds assume bench_fast_init() prewarmed cache → remove check (-1 branch)
#if !HAKMEM_TINY_FRONT_PGO
// Lazy init check (once per thread, per class)
if (__builtin_expect(cache->slots == NULL, 0)) {
unified_cache_init(); // First call in this thread
// Re-check after init (may fail if allocation failed)
if (cache->slots == NULL) return 0;
}
#endif
uint16_t next_tail = (cache->tail + 1) & cache->mask;
// Full check (leave 1 slot empty to distinguish full/empty)
if (__builtin_expect(next_tail == cache->head, 0)) {
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_full[class_idx]++;
#endif
return 0; // Full
}
// Push to tail (producer)
cache->slots[cache->tail] = base_raw; // 1 cache miss (array write)
cache->tail = next_tail;
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_push[class_idx]++;
#endif
return 1; // SUCCESS (2-3 cache misses total)
}
// ============================================================================
// Phase 23-D: Self-Contained Pop-or-Refill (tcache-style, single-layer)
// ============================================================================
// All-in-one: Pop from cache, or refill from SuperSlab on miss
// Returns: BASE pointer (wrapped hak_base_ptr_t), or NULL-wrapped if failed
// Design: Self-contained, bypasses all other frontend layers (Ring/FC/SFC/SLL)
static inline hak_base_ptr_t unified_cache_pop_or_refill(int class_idx) {
// Phase 8-Step1: Use config macro for dead code elimination in PGO mode
// Fast path: Unified cache disabled → NULL-wrapped (caller uses legacy cascade)
if (__builtin_expect(!TINY_FRONT_UNIFIED_CACHE_ENABLED, 0))
return HAK_BASE_FROM_RAW(NULL);
TinyUnifiedCache* cache = &g_unified_cache[class_idx]; // 1 cache miss (TLS)
// Phase 8-Step3: Lazy init check (conditional in PGO mode)
// PGO builds assume bench_fast_init() prewarmed cache → remove check (-1 branch)
#if !HAKMEM_TINY_FRONT_PGO
// Lazy init check (once per thread, per class)
if (__builtin_expect(cache->slots == NULL, 0)) {
unified_cache_init();
if (cache->slots == NULL)
return HAK_BASE_FROM_RAW(NULL);
}
#endif
// Try pop from cache (fast path)
if (__builtin_expect(cache->head != cache->tail, 1)) {
void* base = cache->slots[cache->head]; // 1 cache miss (array access)
cache->head = (cache->head + 1) & cache->mask;
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_hit[class_idx]++;
#endif
return HAK_BASE_FROM_RAW(base); // Hit! (2-3 cache misses total)
}
// Cache miss → Batch refill from SuperSlab
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_miss[class_idx]++;
#endif
return unified_cache_refill(class_idx); // Refill + return first block (BASE)
}
#endif // HAK_FRONT_TINY_UNIFIED_CACHE_H