Files
hakmem/core/hakmem_tiny_refill_p0.inc.h
Moe Charm (CI) 03df05ec75 Phase 12: Shared SuperSlab Pool implementation (WIP - runtime crash)
## Summary
Implemented Phase 12 Shared SuperSlab Pool (mimalloc-style) to address
SuperSlab allocation churn (877 SuperSlabs → 100-200 target).

## Implementation (ChatGPT + Claude)
1. **Metadata changes** (superslab_types.h):
   - Added class_idx to TinySlabMeta (per-slab dynamic class)
   - Removed size_class from SuperSlab (no longer per-SuperSlab)
   - Changed owner_tid (16-bit) → owner_tid_low (8-bit)

2. **Shared Pool** (hakmem_shared_pool.{h,c}):
   - Global pool shared by all size classes
   - shared_pool_acquire_slab() - Get free slab for class_idx
   - shared_pool_release_slab() - Return slab when empty
   - Per-class hints for fast path optimization

3. **Integration** (23 files modified):
   - Updated all ss->size_class → meta->class_idx
   - Updated all meta->owner_tid → meta->owner_tid_low
   - superslab_refill() now uses shared pool
   - Free path releases empty slabs back to pool

4. **Build system** (Makefile):
   - Added hakmem_shared_pool.o to OBJS_BASE and TINY_BENCH_OBJS_BASE

## Status: ⚠️ Build OK, Runtime CRASH

**Build**:  SUCCESS
- All 23 files compile without errors
- Only warnings: superslab_allocate type mismatch (legacy code)

**Runtime**:  SEGFAULT
- Crash location: sll_refill_small_from_ss()
- Exit code: 139 (SIGSEGV)
- Test case: ./bench_random_mixed_hakmem 1000 256 42

## Known Issues
1. **SEGFAULT in refill path** - Likely shared_pool_acquire_slab() issue
2. **Legacy superslab_allocate()** still exists (type mismatch warning)
3. **Remaining TODOs** from design doc:
   - SuperSlab physical layout integration
   - slab_handle.h cleanup
   - Remove old per-class head implementation

## Next Steps
1. Debug SEGFAULT (gdb backtrace shows sll_refill_small_from_ss)
2. Fix shared_pool_acquire_slab() or superslab_init_slab()
3. Basic functionality test (1K → 100K iterations)
4. Measure SuperSlab count reduction (877 → 100-200)
5. Performance benchmark (+650-860% expected)

## Files Changed (25 files)
core/box/free_local_box.c
core/box/free_remote_box.c
core/box/front_gate_classifier.c
core/hakmem_super_registry.c
core/hakmem_tiny.c
core/hakmem_tiny_bg_spill.c
core/hakmem_tiny_free.inc
core/hakmem_tiny_lifecycle.inc
core/hakmem_tiny_magazine.c
core/hakmem_tiny_query.c
core/hakmem_tiny_refill.inc.h
core/hakmem_tiny_superslab.c
core/hakmem_tiny_superslab.h
core/hakmem_tiny_tls_ops.h
core/slab_handle.h
core/superslab/superslab_inline.h
core/superslab/superslab_types.h
core/tiny_debug.h
core/tiny_free_fast.inc.h
core/tiny_free_magazine.inc.h
core/tiny_remote.c
core/tiny_superslab_alloc.inc.h
core/tiny_superslab_free.inc.h
Makefile

## New Files (3 files)
PHASE12_SHARED_SUPERSLAB_POOL_DESIGN.md
core/hakmem_shared_pool.c
core/hakmem_shared_pool.h

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: ChatGPT <chatgpt@openai.com>
2025-11-13 16:33:03 +09:00

277 lines
9.7 KiB
C

#ifndef HAKMEM_TINY_REFILL_P0_INC_H
#define HAKMEM_TINY_REFILL_P0_INC_H
// hakmem_tiny_refill_p0.inc.h
// P0: Batch refill implementation (sll_refill_batch_from_ss only).
// Phase 12: DO NOT alias or redefine sll_refill_small_from_ss here.
// NOTE: This file is active only when HAKMEM_TINY_P0_BATCH_REFILL=1.
#if HAKMEM_TINY_P0_BATCH_REFILL
#include "tiny_box_geometry.h" // Box 3: Geometry & Capacity Calculator
#include "tiny_refill_opt.h"
#include "tiny_fc_api.h"
#include "superslab/superslab_inline.h" // For _ss_remote_drain_to_freelist_unsafe()
#include "box/integrity_box.h" // Box I: Integrity verification (Priority ALPHA)
#include "box/tiny_next_ptr_box.h" // Box API: Next pointer read/write
// Debug counters (compile-time gated)
#if HAKMEM_DEBUG_COUNTERS
extern unsigned long long g_rf_hit_slab[];
extern unsigned long long g_rf_early_no_ss[];
extern unsigned long long g_rf_early_no_meta[];
extern unsigned long long g_rf_early_no_room[];
extern unsigned long long g_rf_early_want_zero[];
#endif
// Optional P0 diagnostic logging helper
static inline int p0_should_log(void) {
static int en = -1;
if (__builtin_expect(en == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_P0_LOG");
en = (e && *e && *e != '0') ? 1 : 0;
}
return en;
}
// P0 batch refill entry point
static inline int sll_refill_batch_from_ss(int class_idx, int max_take) {
// Phase E1-CORRECT: C7 now has headers, can use P0 batch refill
// Runtime A/B kill switch (defensive). Set HAKMEM_TINY_P0_DISABLE=1 to bypass P0 path.
do {
static int g_p0_disable = -1;
if (__builtin_expect(g_p0_disable == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_P0_DISABLE");
g_p0_disable = (e && *e && *e != '0') ? 1 : 0;
}
if (__builtin_expect(g_p0_disable, 0)) {
return 0;
}
} while (0);
if (!g_use_superslab || max_take <= 0) {
#if HAKMEM_DEBUG_COUNTERS
if (!g_use_superslab) g_rf_early_no_ss[class_idx]++;
#endif
return 0;
}
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
uint32_t active_before = 0;
if (tls->ss) {
active_before = atomic_load_explicit(&tls->ss->total_active_blocks, memory_order_relaxed);
}
if (!tls->ss) {
if (!superslab_refill(class_idx)) {
return 0;
}
}
TinySlabMeta* meta = tls->meta;
if (!meta) {
#if HAKMEM_DEBUG_COUNTERS
g_rf_early_no_meta[class_idx]++;
#endif
return 0;
}
#if HAKMEM_INTEGRITY_LEVEL >= 4
uint8_t* initial_slab_base =
tls->slab_base ? tls->slab_base : tiny_slab_base_for(tls->ss, tls->slab_idx);
SlabMetadataState meta_initial =
integrity_capture_slab_metadata(meta, initial_slab_base, class_idx);
INTEGRITY_CHECK_SLAB_METADATA(meta_initial, "P0 refill entry");
#endif
// Optional: Direct-FC fast path (kept as-is from original P0, no aliasing)
do {
static int g_direct_fc = -1;
static int g_direct_fc_c7 = -1;
if (__builtin_expect(g_direct_fc == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_P0_DIRECT_FC");
g_direct_fc = (e && *e && *e == '0') ? 0 : 1;
}
if (__builtin_expect(g_direct_fc_c7 == -1, 0)) {
const char* e7 = getenv("HAKMEM_TINY_P0_DIRECT_FC_C7");
g_direct_fc_c7 = (e7 && *e7) ? ((*e7 == '0') ? 0 : 1) : 0;
}
if (__builtin_expect((g_direct_fc && class_idx == 5) ||
(g_direct_fc_c7 && class_idx == 7), 0)) {
int room = tiny_fc_room(class_idx);
if (room <= 0) return 0;
uint32_t rmt = atomic_load_explicit(
&tls->ss->remote_counts[tls->slab_idx], memory_order_relaxed);
static int g_drain_th = -1;
if (__builtin_expect(g_drain_th == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_P0_DRAIN_THRESH");
int v = (e && *e) ? atoi(e) : 64;
g_drain_th = (v < 0) ? 0 : v;
}
if (rmt >= (uint32_t)g_drain_th) {
static int no_drain = -1;
if (__builtin_expect(no_drain == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_P0_NO_DRAIN");
no_drain = (e && *e && *e != '0') ? 1 : 0;
}
if (!no_drain) {
_ss_remote_drain_to_freelist_unsafe(
tls->ss, tls->slab_idx, tls->meta);
}
}
void* out[128];
int produced = 0;
TinySlabMeta* m = tls->meta;
size_t bs = tiny_stride_for_class(class_idx);
uint8_t* base = tls->slab_base
? tls->slab_base
: tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
while (produced < room) {
if (m->freelist) {
void* p = m->freelist;
m->freelist = tiny_next_read(class_idx, p);
m->used++;
out[produced++] = p;
} else if (m->carved < m->capacity) {
void* p = (void*)(base + ((size_t)m->carved * bs));
m->carved++;
m->used++;
out[produced++] = p;
} else {
if (!superslab_refill(class_idx)) break;
tls = &g_tls_slabs[class_idx];
m = tls->meta;
base = tls->slab_base
? tls->slab_base
: tiny_slab_base_for(tls->ss, tls->slab_idx);
}
}
if (produced > 0) {
ss_active_add(tls->ss, (uint32_t)produced);
(void)tiny_fc_push_bulk(class_idx, out, produced);
return produced;
}
// fallthrough to regular path
}
} while (0);
uint32_t sll_cap = sll_cap_for_class(class_idx, (uint32_t)TINY_TLS_MAG_CAP);
int room = (int)sll_cap - (int)g_tls_sll_count[class_idx];
if (room <= 0) {
#if HAKMEM_DEBUG_COUNTERS
g_rf_early_no_room[class_idx]++;
#endif
return 0;
}
uint32_t want = (uint32_t)max_take;
if (want > (uint32_t)room) want = (uint32_t)room;
if (want == 0) {
#if HAKMEM_DEBUG_COUNTERS
g_rf_early_want_zero[class_idx]++;
#endif
return 0;
}
size_t bs = tiny_stride_for_class(class_idx);
int total_taken = 0;
while (want > 0) {
uintptr_t ss_base = 0;
uintptr_t ss_limit = 0;
if (tls->ss && tls->slab_idx >= 0) {
uint8_t* slab_base =
tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
ss_base = (uintptr_t)slab_base;
ss_limit = ss_base + tiny_usable_bytes_for_slab(tls->slab_idx);
}
if (tls->ss && tls->slab_idx >= 0) {
uint32_t remote_count = atomic_load_explicit(
&tls->ss->remote_counts[tls->slab_idx], memory_order_relaxed);
if (remote_count > 0) {
static int no_drain = -1;
if (__builtin_expect(no_drain == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_P0_NO_DRAIN");
no_drain = (e && *e && *e != '0') ? 1 : 0;
}
if (!no_drain) {
_ss_remote_drain_to_freelist_unsafe(tls->ss, tls->slab_idx, meta);
}
}
}
TinyRefillChain chain;
uint32_t from_freelist = trc_pop_from_freelist(
meta, class_idx, ss_base, ss_limit, bs, want, &chain);
if (from_freelist > 0) {
trc_splice_to_sll(
class_idx, &chain,
&g_tls_sll_head[class_idx],
&g_tls_sll_count[class_idx]);
ss_active_add(tls->ss, from_freelist);
meta->used = (uint16_t)((uint32_t)meta->used + from_freelist);
#if HAKMEM_DEBUG_COUNTERS
extern unsigned long long g_rf_freelist_items[];
g_rf_freelist_items[class_idx] += from_freelist;
#endif
total_taken += from_freelist;
want -= from_freelist;
if (want == 0) break;
}
if (meta->carved >= meta->capacity) {
if (!superslab_refill(class_idx)) break;
tls = &g_tls_slabs[class_idx];
meta = tls->meta;
if (!meta) break;
continue;
}
uint32_t available = meta->capacity - meta->carved;
uint32_t batch = want;
if (batch > available) batch = available;
if (batch == 0) break;
uint8_t* slab_base = tls->slab_base
? tls->slab_base
: tiny_slab_base_for(tls->ss, tls->slab_idx);
TinyRefillChain carve;
trc_linear_carve(slab_base, bs, meta, batch, class_idx, &carve);
trc_splice_to_sll(
class_idx, &carve,
&g_tls_sll_head[class_idx],
&g_tls_sll_count[class_idx]);
ss_active_add(tls->ss, batch);
#if HAKMEM_DEBUG_COUNTERS
extern unsigned long long g_rf_carve_items[];
g_rf_carve_items[class_idx] += batch;
#endif
total_taken += batch;
want -= batch;
}
#if HAKMEM_DEBUG_COUNTERS
g_rf_hit_slab[class_idx]++;
#endif
if (tls->ss && p0_should_log()) {
uint32_t active_after = atomic_load_explicit(
&tls->ss->total_active_blocks, memory_order_relaxed);
int32_t delta =
(int32_t)active_after - (int32_t)active_before;
fprintf(stderr,
"[P0_COUNTER] cls=%d slab=%d taken=%d active_delta=%d\n",
class_idx, tls->slab_idx, total_taken, delta);
}
return total_taken;
}
#endif // HAKMEM_TINY_P0_BATCH_REFILL
#endif // HAKMEM_TINY_REFILL_P0_INC_H