## Summary
Implemented Phase 12 Shared SuperSlab Pool (mimalloc-style) to address
SuperSlab allocation churn (877 SuperSlabs → 100-200 target).
## Implementation (ChatGPT + Claude)
1. **Metadata changes** (superslab_types.h):
- Added class_idx to TinySlabMeta (per-slab dynamic class)
- Removed size_class from SuperSlab (no longer per-SuperSlab)
- Changed owner_tid (16-bit) → owner_tid_low (8-bit)
2. **Shared Pool** (hakmem_shared_pool.{h,c}):
- Global pool shared by all size classes
- shared_pool_acquire_slab() - Get free slab for class_idx
- shared_pool_release_slab() - Return slab when empty
- Per-class hints for fast path optimization
3. **Integration** (23 files modified):
- Updated all ss->size_class → meta->class_idx
- Updated all meta->owner_tid → meta->owner_tid_low
- superslab_refill() now uses shared pool
- Free path releases empty slabs back to pool
4. **Build system** (Makefile):
- Added hakmem_shared_pool.o to OBJS_BASE and TINY_BENCH_OBJS_BASE
## Status: ⚠️ Build OK, Runtime CRASH
**Build**: ✅ SUCCESS
- All 23 files compile without errors
- Only warnings: superslab_allocate type mismatch (legacy code)
**Runtime**: ❌ SEGFAULT
- Crash location: sll_refill_small_from_ss()
- Exit code: 139 (SIGSEGV)
- Test case: ./bench_random_mixed_hakmem 1000 256 42
## Known Issues
1. **SEGFAULT in refill path** - Likely shared_pool_acquire_slab() issue
2. **Legacy superslab_allocate()** still exists (type mismatch warning)
3. **Remaining TODOs** from design doc:
- SuperSlab physical layout integration
- slab_handle.h cleanup
- Remove old per-class head implementation
## Next Steps
1. Debug SEGFAULT (gdb backtrace shows sll_refill_small_from_ss)
2. Fix shared_pool_acquire_slab() or superslab_init_slab()
3. Basic functionality test (1K → 100K iterations)
4. Measure SuperSlab count reduction (877 → 100-200)
5. Performance benchmark (+650-860% expected)
## Files Changed (25 files)
core/box/free_local_box.c
core/box/free_remote_box.c
core/box/front_gate_classifier.c
core/hakmem_super_registry.c
core/hakmem_tiny.c
core/hakmem_tiny_bg_spill.c
core/hakmem_tiny_free.inc
core/hakmem_tiny_lifecycle.inc
core/hakmem_tiny_magazine.c
core/hakmem_tiny_query.c
core/hakmem_tiny_refill.inc.h
core/hakmem_tiny_superslab.c
core/hakmem_tiny_superslab.h
core/hakmem_tiny_tls_ops.h
core/slab_handle.h
core/superslab/superslab_inline.h
core/superslab/superslab_types.h
core/tiny_debug.h
core/tiny_free_fast.inc.h
core/tiny_free_magazine.inc.h
core/tiny_remote.c
core/tiny_superslab_alloc.inc.h
core/tiny_superslab_free.inc.h
Makefile
## New Files (3 files)
PHASE12_SHARED_SUPERSLAB_POOL_DESIGN.md
core/hakmem_shared_pool.c
core/hakmem_shared_pool.h
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: ChatGPT <chatgpt@openai.com>
564 lines
23 KiB
C
564 lines
23 KiB
C
// hakmem_tiny_refill.inc.h
|
||
// Phase 2D-1: Hot-path inline functions - Refill operations
|
||
//
|
||
// This file contains hot-path refill functions for various allocation tiers.
|
||
// These functions are extracted from hakmem_tiny.c to improve maintainability and
|
||
// reduce the main file size by approximately 280 lines.
|
||
//
|
||
// Functions handle:
|
||
// - tiny_fast_refill_and_take: Fast cache refill (lines 584-622, 39 lines)
|
||
// - quick_refill_from_sll: Quick slot refill from SLL (lines 918-936, 19 lines)
|
||
// - quick_refill_from_mag: Quick slot refill from magazine (lines 938-949, 12 lines)
|
||
// - sll_refill_small_from_ss: SLL refill from superslab (lines 952-996, 45 lines)
|
||
// - superslab_tls_bump_fast: TLS bump allocation (lines 1016-1060, 45 lines)
|
||
// - frontend_refill_fc: Frontend fast cache refill (lines 1063-1106, 44 lines)
|
||
// - bulk_mag_to_sll_if_room: Magazine to SLL bulk transfer (lines 1133-1154, 22 lines)
|
||
// - ultra_refill_sll: Ultra-mode SLL refill (lines 1178-1233, 56 lines)
|
||
|
||
#ifndef HAKMEM_TINY_REFILL_INC_H
|
||
#define HAKMEM_TINY_REFILL_INC_H
|
||
|
||
#include "hakmem_tiny.h"
|
||
#include "hakmem_tiny_superslab.h"
|
||
#include "hakmem_tiny_magazine.h"
|
||
#include "hakmem_tiny_tls_list.h"
|
||
#include "tiny_box_geometry.h" // Box 3: Geometry & Capacity Calculator
|
||
#include "hakmem_super_registry.h" // For hak_super_lookup (Debug validation)
|
||
#include "superslab/superslab_inline.h" // For slab_index_for/ss_slabs_capacity (Debug validation)
|
||
#include "box/tls_sll_box.h" // Box TLS-SLL: Safe SLL operations API
|
||
#include "hakmem_tiny_integrity.h" // PRIORITY 1-4: Corruption detection
|
||
#include "box/tiny_next_ptr_box.h" // Box API: Next pointer read/write
|
||
#include <stdint.h>
|
||
#include <pthread.h>
|
||
#include <stdlib.h>
|
||
|
||
// External declarations for TLS variables and globals
|
||
extern int g_fast_enable;
|
||
extern uint16_t g_fast_cap[TINY_NUM_CLASSES];
|
||
extern __thread void* g_fast_head[TINY_NUM_CLASSES];
|
||
extern __thread uint16_t g_fast_count[TINY_NUM_CLASSES];
|
||
|
||
extern int g_tls_list_enable;
|
||
extern int g_tls_sll_enable;
|
||
extern __thread void* g_tls_sll_head[TINY_NUM_CLASSES];
|
||
extern __thread uint32_t g_tls_sll_count[TINY_NUM_CLASSES];
|
||
|
||
extern int g_use_superslab;
|
||
extern int g_ultra_bump_shadow;
|
||
extern int g_bump_chunk;
|
||
extern __thread uint8_t* g_tls_bcur[TINY_NUM_CLASSES];
|
||
extern __thread uint8_t* g_tls_bend[TINY_NUM_CLASSES];
|
||
|
||
extern int g_fastcache_enable;
|
||
extern int g_quick_enable;
|
||
|
||
// External variable declarations
|
||
// Note: TinyTLSSlab, TinyFastCache, and TinyQuickSlot types must be defined before including this file
|
||
extern __thread TinyTLSSlab g_tls_slabs[TINY_NUM_CLASSES];
|
||
extern TinyPool g_tiny_pool;
|
||
extern PaddedLock g_tiny_class_locks[TINY_NUM_CLASSES];
|
||
extern __thread TinyFastCache g_fast_cache[TINY_NUM_CLASSES];
|
||
extern __thread TinyQuickSlot g_tls_quick[TINY_NUM_CLASSES];
|
||
|
||
// Frontend fill target
|
||
extern _Atomic uint32_t g_frontend_fill_target[TINY_NUM_CLASSES];
|
||
|
||
// Debug counters
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
extern uint64_t g_bump_hits[TINY_NUM_CLASSES];
|
||
extern uint64_t g_bump_arms[TINY_NUM_CLASSES];
|
||
extern uint64_t g_path_refill_calls[TINY_NUM_CLASSES];
|
||
extern uint64_t g_ultra_refill_calls[TINY_NUM_CLASSES];
|
||
#define HAK_PATHDBG_INC(arr, idx) do { if (g_path_debug_enabled) { (arr)[(idx)]++; } } while(0)
|
||
#define HAK_ULTRADBG_INC(arr, idx) do { (arr)[(idx)]++; } while(0)
|
||
extern int g_path_debug_enabled;
|
||
#else
|
||
#define HAK_PATHDBG_INC(arr, idx) do { (void)(idx); } while(0)
|
||
#define HAK_ULTRADBG_INC(arr, idx) do { (void)(idx); } while(0)
|
||
#endif
|
||
|
||
// Tracepoint macros
|
||
#ifndef HAK_TP1
|
||
#define HAK_TP1(name, idx) do { (void)(idx); } while(0)
|
||
#endif
|
||
|
||
// Forward declarations for functions used in this file
|
||
static inline void* tiny_fast_pop(int class_idx);
|
||
static inline int tiny_fast_push(int class_idx, void* ptr);
|
||
static inline int tls_refill_from_tls_slab(int class_idx, TinyTLSList* tls, uint32_t want);
|
||
static inline uint32_t sll_cap_for_class(int class_idx, uint32_t mag_cap);
|
||
SuperSlab* superslab_refill(int class_idx);
|
||
static void* slab_data_start(SuperSlab* ss, int slab_idx);
|
||
static inline uint8_t* tiny_slab_base_for(SuperSlab* ss, int slab_idx);
|
||
void ss_active_add(SuperSlab* ss, uint32_t n);
|
||
static inline void ss_active_inc(SuperSlab* ss);
|
||
static TinySlab* allocate_new_slab(int class_idx);
|
||
static void move_to_full_list(int class_idx, struct TinySlab* target_slab);
|
||
static int hak_tiny_find_free_block(TinySlab* slab);
|
||
static void hak_tiny_set_used(TinySlab* slab, int block_idx);
|
||
static inline int ultra_batch_for_class(int class_idx);
|
||
static inline int ultra_sll_cap_for_class(int class_idx);
|
||
// Note: tiny_small_mags_init_once and tiny_mag_init_if_needed are declared in hakmem_tiny_magazine.h
|
||
static void eventq_push(int class_idx, uint32_t size);
|
||
|
||
// Debug-only: Validate that a base node belongs to the expected Tiny SuperSlab and is stride-aligned
|
||
// IMPORTANT: This is expensive validation, ONLY enabled in DEBUG builds
|
||
#if !HAKMEM_BUILD_RELEASE && 0 // Disabled by default even in debug (enable with #if 1 if needed)
|
||
static inline void tiny_debug_validate_node_base(int class_idx, void* node, const char* where) {
|
||
if ((uintptr_t)node < 4096) {
|
||
fprintf(stderr, "[SLL_NODE_SMALL] %s: node=%p cls=%d\n", where, node, class_idx);
|
||
abort();
|
||
}
|
||
SuperSlab* ss = hak_super_lookup(node);
|
||
if (!ss) {
|
||
fprintf(stderr, "[SLL_NODE_UNKNOWN] %s: node=%p cls=%d\n", where, node, class_idx);
|
||
abort();
|
||
}
|
||
int ocls = meta ? meta->class_idx : -1;
|
||
if (ocls == 7 || ocls != class_idx) {
|
||
fprintf(stderr, "[SLL_NODE_CLASS_MISMATCH] %s: node=%p cls=%d owner_cls=%d\n", where, node, class_idx, ocls);
|
||
abort();
|
||
}
|
||
int slab_idx = slab_index_for(ss, node);
|
||
if (slab_idx < 0 || slab_idx >= ss_slabs_capacity(ss)) {
|
||
fprintf(stderr, "[SLL_NODE_SLAB_OOB] %s: node=%p slab_idx=%d cap=%d\n", where, node, slab_idx, ss_slabs_capacity(ss));
|
||
abort();
|
||
}
|
||
uint8_t* base = tiny_slab_base_for_geometry(ss, slab_idx);
|
||
size_t usable = tiny_usable_bytes_for_slab(slab_idx);
|
||
size_t stride = tiny_stride_for_class(ocls);
|
||
uintptr_t a = (uintptr_t)node;
|
||
if (a < (uintptr_t)base || a >= (uintptr_t)base + usable) {
|
||
fprintf(stderr, "[SLL_NODE_RANGE] %s: node=%p base=%p usable=%zu\n", where, node, base, usable);
|
||
abort();
|
||
}
|
||
size_t off = (size_t)(a - (uintptr_t)base);
|
||
if (off % stride != 0) {
|
||
fprintf(stderr, "[SLL_NODE_MISALIGNED] %s: node=%p off=%zu stride=%zu base=%p\n", where, node, off, stride, base);
|
||
abort();
|
||
}
|
||
}
|
||
#else
|
||
static inline void tiny_debug_validate_node_base(int class_idx, void* node, const char* where) { (void)class_idx; (void)node; (void)where; }
|
||
#endif
|
||
|
||
// Fast cache refill and take operation
|
||
static inline void* tiny_fast_refill_and_take(int class_idx, TinyTLSList* tls) {
|
||
// Phase 1: C0–C3 prefer headerless array stack (FastCache) for lowest latency
|
||
if (__builtin_expect(g_fastcache_enable && class_idx <= 3, 1)) {
|
||
void* fc = fastcache_pop(class_idx);
|
||
if (fc) {
|
||
extern unsigned long long g_front_fc_hit[];
|
||
g_front_fc_hit[class_idx]++;
|
||
return fc;
|
||
} else {
|
||
extern unsigned long long g_front_fc_miss[];
|
||
g_front_fc_miss[class_idx]++;
|
||
}
|
||
}
|
||
// For class5 hotpath, skip direct Front (SFC/SLL) and rely on TLS List path
|
||
extern int g_tiny_hotpath_class5;
|
||
if (!(g_tiny_hotpath_class5 && class_idx == 5)) {
|
||
void* direct = tiny_fast_pop(class_idx);
|
||
if (direct) return direct;
|
||
}
|
||
uint16_t cap = g_fast_cap[class_idx];
|
||
if (cap == 0) return NULL;
|
||
uint16_t count = g_fast_count[class_idx];
|
||
uint16_t need = cap > count ? (uint16_t)(cap - count) : 0;
|
||
if (need == 0) return NULL;
|
||
uint32_t have = tls->count;
|
||
if (have < need) {
|
||
uint32_t want = need - have;
|
||
uint32_t thresh = tls_list_refill_threshold(tls);
|
||
if (want < thresh) want = thresh;
|
||
tls_refill_from_tls_slab(class_idx, tls, want);
|
||
}
|
||
void* batch_head = NULL;
|
||
void* batch_tail = NULL;
|
||
uint32_t taken = tls_list_bulk_take(tls, need, &batch_head, &batch_tail, class_idx);
|
||
if (taken == 0u || batch_head == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
void* ret = batch_head;
|
||
void* node = tiny_next_read(class_idx, ret);
|
||
uint32_t remaining = (taken > 0u) ? (taken - 1u) : 0u;
|
||
|
||
while (node && remaining > 0u) {
|
||
void* next = tiny_next_read(class_idx, node);
|
||
int pushed = 0;
|
||
if (__builtin_expect(g_fastcache_enable && class_idx <= 3, 1)) {
|
||
// Headerless array stack for hottest tiny classes
|
||
pushed = fastcache_push(class_idx, node);
|
||
} else {
|
||
// For class5 hotpath, keep leftovers in TLS List (not SLL)
|
||
extern int g_tiny_hotpath_class5;
|
||
if (__builtin_expect(g_tiny_hotpath_class5 && class_idx == 5, 0)) {
|
||
tls_list_push_fast(tls, node, 5);
|
||
pushed = 1;
|
||
} else {
|
||
pushed = tiny_fast_push(class_idx, node);
|
||
}
|
||
}
|
||
if (pushed) { node = next; remaining--; }
|
||
else {
|
||
// Push failed, return remaining to TLS (preserve order)
|
||
tls_list_bulk_put(tls, node, batch_tail, remaining, class_idx);
|
||
// ✅ FIX #16: Return BASE pointer (not USER)
|
||
// Caller will apply HAK_RET_ALLOC which does BASE → USER conversion
|
||
return ret;
|
||
}
|
||
}
|
||
// ✅ FIX #16: Return BASE pointer (not USER)
|
||
// Caller will apply HAK_RET_ALLOC which does BASE → USER conversion
|
||
return ret;
|
||
}
|
||
|
||
// Quick slot refill from SLL
|
||
static inline int quick_refill_from_sll(int class_idx) {
|
||
if (!g_tls_sll_enable) return 0;
|
||
TinyQuickSlot* qs = &g_tls_quick[class_idx];
|
||
int room = (int)(QUICK_CAP - qs->top);
|
||
if (room <= 0) return 0;
|
||
// Limit burst to a tiny constant to reduce loop/branches
|
||
if (room > 2) room = 2;
|
||
int filled = 0;
|
||
while (room > 0) {
|
||
// CRITICAL: Use Box TLS-SLL API to avoid race condition (rbp=0xa0 SEGV)
|
||
void* head = NULL;
|
||
if (!tls_sll_pop(class_idx, &head)) break;
|
||
// One-shot validation for the first pop
|
||
#if !HAKMEM_BUILD_RELEASE
|
||
do { static _Atomic int once = 0; int exp = 0; if (atomic_compare_exchange_strong(&once, &exp, 1)) { tiny_debug_validate_node_base(class_idx, head, "quick_refill_from_sll"); } } while (0);
|
||
#endif
|
||
qs->items[qs->top++] = head;
|
||
room--; filled++;
|
||
}
|
||
if (filled > 0) HAK_TP1(quick_refill_sll, class_idx);
|
||
if (filled > 0) {
|
||
extern unsigned long long g_front_quick_hit[];
|
||
g_front_quick_hit[class_idx]++;
|
||
}
|
||
return filled;
|
||
}
|
||
|
||
// Quick slot refill from magazine
|
||
static inline int quick_refill_from_mag(int class_idx) {
|
||
TinyTLSMag* mag = &g_tls_mags[class_idx];
|
||
if (mag->top <= 0) return 0;
|
||
TinyQuickSlot* qs = &g_tls_quick[class_idx];
|
||
int room = (int)(QUICK_CAP - qs->top);
|
||
if (room <= 0) return 0;
|
||
// Only a single transfer from magazine to minimize overhead
|
||
int take = (mag->top > 0 && room > 0) ? 1 : 0;
|
||
for (int i = 0; i < take; i++) { qs->items[qs->top++] = mag->items[--mag->top].ptr; }
|
||
if (take > 0) HAK_TP1(quick_refill_mag, class_idx);
|
||
return take;
|
||
}
|
||
|
||
|
||
// Box 3 wrapper: verify linear carve stays within slab usable bytes (Fail-Fast)
|
||
// DEPRECATED: Use tiny_carve_guard_verbose() from Box 3 directly
|
||
static inline int tiny_linear_carve_guard(TinyTLSSlab* tls,
|
||
TinySlabMeta* meta,
|
||
size_t stride,
|
||
uint32_t reserve,
|
||
const char* stage) {
|
||
if (!tls || !meta) return 0;
|
||
int class_idx = (tls->meta && tls->meta->class_idx < TINY_NUM_CLASSES)
|
||
? (int)tls->meta->class_idx
|
||
: -1;
|
||
return tiny_carve_guard_verbose(stage,
|
||
class_idx,
|
||
tls->slab_idx,
|
||
meta->carved,
|
||
meta->used,
|
||
meta->capacity,
|
||
stride,
|
||
reserve);
|
||
}
|
||
|
||
// Refill a few nodes directly into TLS SLL from TLS-cached SuperSlab (owner-thread only)
|
||
// Note: If HAKMEM_TINY_P0_BATCH_REFILL is enabled, sll_refill_batch_from_ss is used instead
|
||
#ifdef HAKMEM_TINY_PHASE6_BOX_REFACTOR
|
||
__attribute__((noinline)) int sll_refill_small_from_ss(int class_idx, int max_take) {
|
||
#else
|
||
static inline int sll_refill_small_from_ss(int class_idx, int max_take) {
|
||
#endif
|
||
HAK_CHECK_CLASS_IDX(class_idx, "sll_refill_small_from_ss");
|
||
atomic_fetch_add(&g_integrity_check_class_bounds, 1);
|
||
|
||
if (!g_use_superslab || max_take <= 0)
|
||
return 0;
|
||
|
||
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
|
||
if (!tls->ss || !tls->meta || tls->meta->class_idx != (uint8_t)class_idx) {
|
||
if (!superslab_refill(class_idx))
|
||
return 0;
|
||
tls = &g_tls_slabs[class_idx];
|
||
if (!tls->ss || !tls->meta || tls->meta->class_idx != (uint8_t)class_idx)
|
||
return 0;
|
||
}
|
||
|
||
TinySlabMeta* meta = tls->meta;
|
||
uint32_t sll_cap = sll_cap_for_class(class_idx, (uint32_t)TINY_TLS_MAG_CAP);
|
||
int room = (int)sll_cap - (int)g_tls_sll_count[class_idx];
|
||
if (room <= 0)
|
||
return 0;
|
||
|
||
int take = max_take < room ? max_take : room;
|
||
int taken = 0;
|
||
size_t bs = tiny_stride_for_class(class_idx);
|
||
|
||
while (taken < take) {
|
||
void* p = NULL;
|
||
|
||
if (meta->freelist) {
|
||
p = meta->freelist;
|
||
meta->freelist = tiny_next_read(class_idx, p);
|
||
meta->used++;
|
||
ss_active_inc(tls->ss);
|
||
} else if (meta->carved < meta->capacity) {
|
||
if (!tiny_linear_carve_guard(tls, meta, bs, 1, "sll_refill_small"))
|
||
abort();
|
||
uint8_t* slab_start = tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
|
||
p = tiny_block_at_index(slab_start, meta->carved, bs);
|
||
meta->carved++;
|
||
meta->used++;
|
||
ss_active_inc(tls->ss);
|
||
} else {
|
||
if (!superslab_refill(class_idx))
|
||
break;
|
||
tls = &g_tls_slabs[class_idx];
|
||
meta = tls->meta;
|
||
if (!tls->ss || !meta || meta->class_idx != (uint8_t)class_idx)
|
||
break;
|
||
continue;
|
||
}
|
||
|
||
if (!p)
|
||
break;
|
||
|
||
if (!tls_sll_push(class_idx, p, sll_cap)) {
|
||
// SLL full; stop without complex rollback.
|
||
break;
|
||
}
|
||
|
||
taken++;
|
||
}
|
||
|
||
return taken;
|
||
}
|
||
|
||
// Ultra-Bump TLS shadow try: returns pointer when a TLS bump window is armed
|
||
// or can be armed by reserving a small chunk from the current SuperSlab meta.
|
||
static inline void* superslab_tls_bump_fast(int class_idx) {
|
||
if (!g_ultra_bump_shadow || !g_use_superslab) return NULL;
|
||
// Serve from armed TLS window if present
|
||
uint8_t* cur = g_tls_bcur[class_idx];
|
||
if (__builtin_expect(cur != NULL, 0)) {
|
||
uint8_t* end = g_tls_bend[class_idx];
|
||
// ✅ FIX #13B: Use stride (not user size) to match window arming (line 516)
|
||
// ROOT CAUSE: Window is carved with stride spacing, but fast path advanced by user size,
|
||
// causing misalignment and missing headers on blocks after the first one.
|
||
size_t bs = g_tiny_class_sizes[class_idx];
|
||
#if HAKMEM_TINY_HEADER_CLASSIDX
|
||
if (class_idx != 7) bs += 1; // stride = user_size + header
|
||
#endif
|
||
if (__builtin_expect(cur <= end - bs, 1)) {
|
||
g_tls_bcur[class_idx] = cur + bs;
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_bump_hits[class_idx]++;
|
||
#endif
|
||
HAK_TP1(bump_hit, class_idx);
|
||
// ✅ FIX #13: Write header and return BASE pointer
|
||
// ROOT CAUSE: Bump allocations didn't write headers, causing corruption when freed.
|
||
// SOLUTION: Write header to carved block before returning BASE.
|
||
// IMPORTANT: Return BASE (not USER) - caller will convert via HAK_RET_ALLOC.
|
||
#if HAKMEM_TINY_HEADER_CLASSIDX
|
||
if (class_idx != 7) {
|
||
*cur = HEADER_MAGIC | (class_idx & HEADER_CLASS_MASK);
|
||
}
|
||
#endif
|
||
return (void*)cur; // Return BASE (caller converts to USER via HAK_RET_ALLOC)
|
||
}
|
||
// Window exhausted
|
||
g_tls_bcur[class_idx] = NULL;
|
||
g_tls_bend[class_idx] = NULL;
|
||
}
|
||
// Arm a new window from TLS-cached SuperSlab meta (linear mode only)
|
||
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
|
||
TinySlabMeta* meta = tls->meta;
|
||
if (!meta || meta->freelist != NULL) return NULL; // linear mode only
|
||
// Use monotonic 'carved' for window arming
|
||
uint16_t carved = meta->carved;
|
||
uint16_t cap = meta->capacity;
|
||
if (carved >= cap) return NULL;
|
||
uint32_t avail = (uint32_t)cap - (uint32_t)carved;
|
||
uint32_t chunk = (g_bump_chunk > 0 ? (uint32_t)g_bump_chunk : 1u);
|
||
if (chunk > avail) chunk = avail;
|
||
// Box 3: Get stride and slab base
|
||
size_t bs = tiny_stride_for_class(tls->meta ? tls->meta->class_idx : 0);
|
||
uint8_t* base = tls->slab_base ? tls->slab_base : tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
|
||
if (__builtin_expect(!tiny_linear_carve_guard(tls, meta, bs, chunk, "tls_bump"), 0)) {
|
||
abort();
|
||
}
|
||
uint8_t* start = base + ((size_t)carved * bs);
|
||
// Reserve the chunk: advance carved and used accordingly
|
||
meta->carved = (uint16_t)(carved + (uint16_t)chunk);
|
||
meta->used = (uint16_t)(meta->used + (uint16_t)chunk);
|
||
// Account all reserved blocks as active in SuperSlab
|
||
ss_active_add(tls->ss, chunk);
|
||
#if HAKMEM_DEBUG_COUNTERS
|
||
g_bump_arms[class_idx]++;
|
||
#endif
|
||
g_tls_bcur[class_idx] = start + bs;
|
||
g_tls_bend[class_idx] = start + (size_t)chunk * bs;
|
||
// ✅ FIX #13: Write header and return BASE pointer
|
||
#if HAKMEM_TINY_HEADER_CLASSIDX
|
||
if (class_idx != 7) {
|
||
*start = HEADER_MAGIC | (class_idx & HEADER_CLASS_MASK);
|
||
}
|
||
#endif
|
||
return (void*)start; // Return BASE (caller converts to USER via HAK_RET_ALLOC)
|
||
}
|
||
|
||
// Frontend: refill FastCache directly from TLS active slab (owner-only) or adopt a slab
|
||
static inline int frontend_refill_fc(int class_idx) {
|
||
TinyFastCache* fc = &g_fast_cache[class_idx];
|
||
int room = TINY_FASTCACHE_CAP - fc->top;
|
||
if (room <= 0) return 0;
|
||
// Target refill (conservative for safety)
|
||
int need = ultra_batch_for_class(class_idx);
|
||
int tgt = atomic_load_explicit(&g_frontend_fill_target[class_idx], memory_order_relaxed);
|
||
if (tgt > 0 && tgt < need) need = tgt;
|
||
if (need > room) need = room;
|
||
if (need <= 0) return 0;
|
||
|
||
int filled = 0;
|
||
|
||
// Step A: First bulk transfer from TLS SLL to FastCache (lock-free, O(1))
|
||
// CRITICAL: Use Box TLS-SLL API to avoid race condition (rbp=0xa0 SEGV)
|
||
if (g_tls_sll_enable) {
|
||
while (need > 0) {
|
||
void* h = NULL;
|
||
if (!tls_sll_pop(class_idx, &h)) break;
|
||
// One-shot validation for the first pop into FastCache
|
||
#if !HAKMEM_BUILD_RELEASE
|
||
do { static _Atomic int once_fc = 0; int exp2 = 0; if (atomic_compare_exchange_strong(&once_fc, &exp2, 1)) { tiny_debug_validate_node_base(class_idx, h, "frontend_refill_fc"); } } while (0);
|
||
#endif
|
||
fc->items[fc->top++] = h;
|
||
need--; filled++;
|
||
if (fc->top >= TINY_FASTCACHE_CAP) break;
|
||
}
|
||
}
|
||
|
||
// Step B: If still not enough, transfer from TLS Magazine (lock-free, O(1))
|
||
if (need > 0) {
|
||
tiny_small_mags_init_once();
|
||
if (class_idx > 3) tiny_mag_init_if_needed(class_idx);
|
||
TinyTLSMag* mag = &g_tls_mags[class_idx];
|
||
while (need > 0 && mag->top > 0 && fc->top < TINY_FASTCACHE_CAP) {
|
||
void* p = mag->items[--mag->top].ptr;
|
||
fc->items[fc->top++] = p;
|
||
need--; filled++;
|
||
}
|
||
}
|
||
|
||
if (filled > 0) {
|
||
eventq_push(class_idx, (uint32_t)g_tiny_class_sizes[class_idx]);
|
||
HAK_PATHDBG_INC(g_path_refill_calls, class_idx);
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
// Move up to 'n' items from TLS magazine to SLL if SLL has room (lock-free).
|
||
static inline int bulk_mag_to_sll_if_room(int class_idx, TinyTLSMag* mag, int n) {
|
||
if (g_tls_list_enable) return 0;
|
||
if (!g_tls_sll_enable || n <= 0) return 0;
|
||
uint32_t cap = sll_cap_for_class(class_idx, (uint32_t)mag->cap);
|
||
uint32_t have = g_tls_sll_count[class_idx];
|
||
if (have >= cap) return 0;
|
||
int room = (int)(cap - have);
|
||
int avail = mag->top;
|
||
// Hysteresis: avoid frequent tiny moves; take at least 8 if possible
|
||
int take = (n < room ? n : room);
|
||
if (take < 8 && avail >= 8 && room >= 8) take = 8;
|
||
if (take > avail) take = avail;
|
||
if (take <= 0) return 0;
|
||
for (int i = 0; i < take; i++) {
|
||
void* p = mag->items[--mag->top].ptr;
|
||
if (!tls_sll_push(class_idx, p, cap)) {
|
||
// No more room; return remaining items to magazine and stop
|
||
mag->top++; // undo pop
|
||
break;
|
||
}
|
||
}
|
||
HAK_PATHDBG_INC(g_path_refill_calls, class_idx);
|
||
return take;
|
||
}
|
||
|
||
// Ultra-mode (SLL-only) refill operation
|
||
static inline void ultra_refill_sll(int class_idx) {
|
||
int need = ultra_batch_for_class(class_idx);
|
||
HAK_ULTRADBG_INC(g_ultra_refill_calls, class_idx);
|
||
int sll_cap = ultra_sll_cap_for_class(class_idx);
|
||
pthread_mutex_t* lock = &g_tiny_class_locks[class_idx].m;
|
||
pthread_mutex_lock(lock);
|
||
TinySlab* slab = g_tiny_pool.free_slabs[class_idx];
|
||
if (!slab) {
|
||
slab = allocate_new_slab(class_idx);
|
||
if (slab) {
|
||
slab->next = g_tiny_pool.free_slabs[class_idx];
|
||
g_tiny_pool.free_slabs[class_idx] = slab;
|
||
}
|
||
}
|
||
if (slab) {
|
||
// Box 3: Get stride (block size + header, except C7 which is headerless)
|
||
size_t bs = tiny_stride_for_class(class_idx);
|
||
int remaining = need;
|
||
while (remaining > 0 && slab->free_count > 0) {
|
||
if ((int)g_tls_sll_count[class_idx] >= sll_cap) break;
|
||
int first = hak_tiny_find_free_block(slab);
|
||
if (first < 0) break;
|
||
// Allocate the first found block
|
||
hak_tiny_set_used(slab, first);
|
||
slab->free_count--;
|
||
void* p0 = (char*)slab->base + ((size_t)first * bs);
|
||
if (!tls_sll_push(class_idx, p0, (uint32_t)sll_cap)) {
|
||
// SLL saturated; stop refilling
|
||
break;
|
||
}
|
||
remaining--;
|
||
// Try to allocate more from the same word to amortize scanning
|
||
int word_idx = first / 64;
|
||
uint64_t used = slab->bitmap[word_idx];
|
||
uint64_t free_bits = ~used;
|
||
while (remaining > 0 && free_bits && slab->free_count > 0) {
|
||
if ((int)g_tls_sll_count[class_idx] >= sll_cap) break;
|
||
int bit_idx = __builtin_ctzll(free_bits);
|
||
int block_idx = word_idx * 64 + bit_idx;
|
||
hak_tiny_set_used(slab, block_idx);
|
||
slab->free_count--;
|
||
void* p = (char*)slab->base + ((size_t)block_idx * bs);
|
||
if (!tls_sll_push(class_idx, p, (uint32_t)sll_cap)) {
|
||
break;
|
||
}
|
||
remaining--;
|
||
// Update free_bits for next iteration
|
||
used = slab->bitmap[word_idx];
|
||
free_bits = ~used;
|
||
}
|
||
if (slab->free_count == 0) {
|
||
move_to_full_list(class_idx, slab);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
pthread_mutex_unlock(lock);
|
||
}
|
||
|
||
#endif // HAKMEM_TINY_REFILL_INC_H
|