Files
hakmem/core/box/capacity_box.c
Moe Charm (CI) c7616fd161 Box API Phase 1-3: Capacity Manager, Carve-Push, Prewarm 実装
Priority 1-3のBox Modulesを実装し、安全なpre-warming APIを提供。
既存の複雑なprewarmコードを1行のBox API呼び出しに置き換え。

## 新規Box Modules

1. **Box Capacity Manager** (capacity_box.h/c)
   - TLS SLL容量の一元管理
   - adaptive_sizing初期化保証
   - Double-free バグ防止

2. **Box Carve-And-Push** (carve_push_box.h/c)
   - アトミックなblock carve + TLS SLL push
   - All-or-nothing semantics
   - Rollback保証(partial failure防止)

3. **Box Prewarm** (prewarm_box.h/c)
   - 安全なTLS cache pre-warming
   - 初期化依存性を隠蔽
   - シンプルなAPI (1関数呼び出し)

## コード簡略化

hakmem_tiny_init.inc: 20行 → 1行
```c
// BEFORE: 複雑なP0分岐とエラー処理
adaptive_sizing_init();
if (prewarm > 0) {
    #if HAKMEM_TINY_P0_BATCH_REFILL
        int taken = sll_refill_batch_from_ss(5, prewarm);
    #else
        int taken = sll_refill_small_from_ss(5, prewarm);
    #endif
}

// AFTER: Box API 1行
int taken = box_prewarm_tls(5, prewarm);
```

## シンボルExport修正

hakmem_tiny.c: 5つのシンボルをstatic → non-static
- g_tls_slabs[] (TLS slab配列)
- g_sll_multiplier (SLL容量乗数)
- g_sll_cap_override[] (容量オーバーライド)
- superslab_refill() (SuperSlab再充填)
- ss_active_add() (アクティブカウンタ)

## ビルドシステム

Makefile: TINY_BENCH_OBJS_BASEに3つのBox modules追加
- core/box/capacity_box.o
- core/box/carve_push_box.o
- core/box/prewarm_box.o

## 動作確認

 Debug build成功
 Box Prewarm API動作確認
   [PREWARM] class=5 requested=128 taken=32

## 次のステップ

- Box Refill Manager (Priority 4)
- Box SuperSlab Allocator (Priority 5)
- Release build修正(tiny_debug_ring_record)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-13 01:45:30 +09:00

124 lines
3.8 KiB
C

// capacity_box.c - Box Capacity Manager Implementation
#include "capacity_box.h"
#include "../tiny_adaptive_sizing.h" // TLSCacheStats, adaptive_sizing_init()
#include "../hakmem_tiny.h" // g_tls_sll_count
#include "../hakmem_tiny_config.h" // TINY_NUM_CLASSES, TINY_TLS_MAG_CAP
#include "../hakmem_tiny_integrity.h" // HAK_CHECK_CLASS_IDX
#include <stdatomic.h>
#include <stdio.h>
#include <stdlib.h>
// ============================================================================
// Internal State
// ============================================================================
// Initialization flag (atomic for thread-safety)
static _Atomic int g_box_cap_initialized = 0;
// External declarations (from adaptive_sizing and hakmem_tiny)
extern __thread TLSCacheStats g_tls_cache_stats[TINY_NUM_CLASSES]; // TLS variable!
extern __thread uint32_t g_tls_sll_count[TINY_NUM_CLASSES];
extern int g_sll_cap_override[TINY_NUM_CLASSES];
extern int g_sll_multiplier;
// ============================================================================
// Box Capacity API Implementation
// ============================================================================
void box_cap_init(void) {
// Idempotent: only initialize once
int expected = 0;
if (atomic_compare_exchange_strong(&g_box_cap_initialized, &expected, 1)) {
// First call: initialize adaptive sizing
adaptive_sizing_init();
}
// Already initialized or just initialized: safe to proceed
}
bool box_cap_is_initialized(void) {
return atomic_load(&g_box_cap_initialized) != 0;
}
uint32_t box_cap_get(int class_idx) {
// PRIORITY 1: Bounds check
HAK_CHECK_CLASS_IDX(class_idx, "box_cap_get");
// Ensure initialized
if (!box_cap_is_initialized()) {
// Auto-initialize on first use (defensive)
box_cap_init();
}
// Compute SLL capacity using same logic as sll_cap_for_class()
// This centralizes the capacity calculation
// Check for override
if (g_sll_cap_override[class_idx] > 0) {
uint32_t cap = (uint32_t)g_sll_cap_override[class_idx];
if (cap > TINY_TLS_MAG_CAP) cap = TINY_TLS_MAG_CAP;
return cap;
}
// Get base capacity from adaptive sizing
uint32_t cap = g_tls_cache_stats[class_idx].capacity;
// Apply class-specific multipliers
if (class_idx <= 3) {
// Hot classes: multiply by g_sll_multiplier
uint32_t mult = (g_sll_multiplier > 0 ? (uint32_t)g_sll_multiplier : 1u);
uint64_t want = (uint64_t)cap * (uint64_t)mult;
if (want > (uint64_t)TINY_TLS_MAG_CAP) {
cap = TINY_TLS_MAG_CAP;
} else {
cap = (uint32_t)want;
}
} else if (class_idx >= 4) {
// Mid-large classes: halve capacity
cap = (cap > 1u ? (cap / 2u) : 1u);
}
return cap;
}
bool box_cap_has_room(int class_idx, uint32_t n) {
// PRIORITY 1: Bounds check
HAK_CHECK_CLASS_IDX(class_idx, "box_cap_has_room");
uint32_t cap = box_cap_get(class_idx);
uint32_t used = g_tls_sll_count[class_idx];
// Check if adding N would exceed capacity
if (used >= cap) return false;
uint32_t avail = cap - used;
return (n <= avail);
}
uint32_t box_cap_avail(int class_idx) {
// PRIORITY 1: Bounds check
HAK_CHECK_CLASS_IDX(class_idx, "box_cap_avail");
uint32_t cap = box_cap_get(class_idx);
uint32_t used = g_tls_sll_count[class_idx];
if (used >= cap) return 0;
return (cap - used);
}
void box_cap_update(int class_idx, uint32_t new_cap) {
// PRIORITY 1: Bounds check
HAK_CHECK_CLASS_IDX(class_idx, "box_cap_update");
// Ensure initialized
if (!box_cap_is_initialized()) {
box_cap_init();
}
// Clamp to max
if (new_cap > TINY_TLS_MAG_CAP) {
new_cap = TINY_TLS_MAG_CAP;
}
// Update adaptive sizing stats
g_tls_cache_stats[class_idx].capacity = new_cap;
}