Files
hakmem/core/hakmem_shared_pool.h
Moe Charm (CI) 03ba62df4d Phase 23 Unified Cache + PageFaultTelemetry generalization: Mid/VM page-fault bottleneck identified
Summary:
- Phase 23 Unified Cache: +30% improvement (Random Mixed 256B: 18.18M → 23.68M ops/s)
- PageFaultTelemetry: Extended to generic buckets (C0-C7, MID, L25, SSM)
- Measurement-driven decision: Mid/VM page-faults (80-100K) >> Tiny (6K) → prioritize Mid/VM optimization

Phase 23 Changes:
1. Unified Cache implementation (core/front/tiny_unified_cache.{c,h})
   - Direct SuperSlab carve (TLS SLL bypass)
   - Self-contained pop-or-refill pattern
   - ENV: HAKMEM_TINY_UNIFIED_CACHE=1, HAKMEM_TINY_UNIFIED_C{0-7}=128

2. Fast path pruning (tiny_alloc_fast.inc.h, tiny_free_fast_v2.inc.h)
   - Unified ON → direct cache access (skip all intermediate layers)
   - Alloc: unified_cache_pop_or_refill() → immediate fail to slow
   - Free: unified_cache_push() → fallback to SLL only if full

PageFaultTelemetry Changes:
3. Generic bucket architecture (core/box/pagefault_telemetry_box.{c,h})
   - PF_BUCKET_{C0-C7, MID, L25, SSM} for domain-specific measurement
   - Integration: hak_pool_try_alloc(), l25_alloc_new_run(), shared_pool_allocate_superslab_unlocked()

4. Measurement results (Random Mixed 500K / 256B):
   - Tiny C2-C7: 2-33 pages, high reuse (64-3.8 touches/page)
   - SSM: 512 pages (initialization footprint)
   - MID/L25: 0 (unused in this workload)
   - Mid/Large VM benchmarks: 80-100K page-faults (13-16x higher than Tiny)

Ring Cache Enhancements:
5. Hot Ring Cache (core/front/tiny_ring_cache.{c,h})
   - ENV: HAKMEM_TINY_HOT_RING_ENABLE=1, HAKMEM_TINY_HOT_RING_C{0-7}=size
   - Conditional compilation cleanup

Documentation:
6. Analysis reports
   - RANDOM_MIXED_BOTTLENECK_ANALYSIS.md: Page-fault breakdown
   - RANDOM_MIXED_SUMMARY.md: Phase 23 summary
   - RING_CACHE_ACTIVATION_GUIDE.md: Ring cache usage
   - CURRENT_TASK.md: Updated with Phase 23 results and Phase 24 plan

Next Steps (Phase 24):
- Target: Mid/VM PageArena/HotSpanBox (page-fault reduction 80-100K → 30-40K)
- Tiny SSM optimization deferred (low ROI, ~6K page-faults already optimal)
- Expected improvement: +30-50% for Mid/Large workloads

Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-17 02:47:58 +09:00

154 lines
6.2 KiB
C

#pragma once
#include <stdint.h>
#include <pthread.h>
#include <stdatomic.h>
#include "superslab/superslab_types.h"
// Shared SuperSlab Pool (Phase 12-2 skeleton)
// Multiple tiny size classes share a global set of SuperSlab instances.
// This header exposes the minimal API used by refill/free hot paths in Phase 12.
#ifdef __cplusplus
extern "C" {
#endif
// ============================================================================
// Phase 12: SP-SLOT Box - Per-Slot State Management
// ============================================================================
//
// Problem:
// - Current design: 1 SuperSlab mixes multiple classes (C0-C7)
// - SuperSlab freed only when ALL classes empty (active_slabs==0)
// - Result: SuperSlabs rarely freed, LRU cache unused
//
// Solution:
// - Track each slab slot's state individually (UNUSED/ACTIVE/EMPTY)
// - Maintain per-class free slot lists for reuse
// - Free SuperSlab only when ALL slots empty
//
// Benefits:
// - Empty slabs from one class can be reused by same class immediately
// - Reduces mmap/munmap churn significantly
// - Enables LRU cache for fully empty SuperSlabs
// Slot state for each (SuperSlab, slab_idx) pair
typedef enum {
SLOT_UNUSED = 0, // Never used yet
SLOT_ACTIVE, // Assigned to a class (meta->used > 0 or freelist non-empty)
SLOT_EMPTY // Was assigned, now empty (meta->used==0, remote==0)
} SlotState;
// Per-slot metadata
// P0-5: state is atomic for lock-free claiming
typedef struct {
_Atomic SlotState state; // Atomic for lock-free CAS (UNUSED→ACTIVE)
uint8_t class_idx; // Valid when state != SLOT_UNUSED (0-7)
uint8_t slab_idx; // SuperSlab-internal index (0-31)
} SharedSlot;
// Per-SuperSlab metadata for slot management
#define MAX_SLOTS_PER_SS 32 // Typical: 1MB SS has 32 slabs of 32KB each
typedef struct SharedSSMeta {
_Atomic(SuperSlab*) ss; // Physical SuperSlab pointer (atomic for lock-free Stage 2)
SharedSlot slots[MAX_SLOTS_PER_SS]; // Slot state for each slab
uint8_t active_slots; // Number of SLOT_ACTIVE slots
uint8_t total_slots; // Total available slots (from ss_slabs_capacity)
struct SharedSSMeta* next; // For free list linking
} SharedSSMeta;
// ============================================================================
// P0-4: Lock-Free Free Slot List (LIFO Stack)
// ============================================================================
// Free slot node for lock-free linked list
typedef struct FreeSlotNode {
SharedSSMeta* meta; // Which SuperSlab metadata
uint8_t slot_idx; // Which slot within that SuperSlab
struct FreeSlotNode* next; // Next node in LIFO stack
} FreeSlotNode;
// Lock-free per-class free slot list (LIFO stack with atomic head)
typedef struct {
_Atomic(FreeSlotNode*) head; // Atomic stack head pointer
} LockFreeFreeList;
// Node pool for lock-free allocation (avoid malloc/free)
#define MAX_FREE_NODES_PER_CLASS 4096 // Pre-allocated nodes per class (increased for 500K+ iterations)
extern FreeSlotNode g_free_node_pool[TINY_NUM_CLASSES_SS][MAX_FREE_NODES_PER_CLASS];
extern _Atomic uint32_t g_node_alloc_index[TINY_NUM_CLASSES_SS];
// ============================================================================
// Legacy Free Slot List (for comparison, will be removed after P0-4)
// ============================================================================
// Free slot entry for per-class reuse lists
typedef struct {
SharedSSMeta* meta; // Which SuperSlab metadata
uint8_t slot_idx; // Which slot within that SuperSlab
} FreeSlotEntry;
// Per-class free slot list (max capacity for now: 256 entries per class)
#define MAX_FREE_SLOTS_PER_CLASS 256
typedef struct {
FreeSlotEntry entries[MAX_FREE_SLOTS_PER_CLASS];
uint32_t count; // Number of free slots available
} FreeSlotList;
typedef struct SharedSuperSlabPool {
SuperSlab** slabs; // Dynamic array of SuperSlab*
uint32_t capacity; // Allocated entries in slabs[]
uint32_t total_count; // Total SuperSlabs ever allocated (<= capacity)
uint32_t active_count; // SuperSlabs that have >0 active slabs
pthread_mutex_t alloc_lock; // Protects pool metadata and grow/scan operations
// Per-class hints: last known SuperSlab with a free slab for that class.
// Read lock-free (best-effort), updated under alloc_lock.
SuperSlab* class_hints[TINY_NUM_CLASSES_SS];
// LRU cache integration hooks (Phase 9/12, optional for now)
SuperSlab* lru_head;
SuperSlab* lru_tail;
uint32_t lru_count;
// ========== Phase 12: SP-SLOT Management ==========
// P0-4: Lock-free per-class free slot lists (atomic LIFO stacks)
LockFreeFreeList free_slots_lockfree[TINY_NUM_CLASSES_SS];
// Legacy: Per-class free slot lists (mutex-protected, for comparison)
FreeSlotList free_slots[TINY_NUM_CLASSES_SS];
// SharedSSMeta array for all SuperSlabs in pool
// RACE FIX: Fixed-size array (no realloc!) to avoid race with lock-free Stage 2
// LARSON FIX (2025-11-16): Increased from 2048 → 8192 for MT churn workloads
#define MAX_SS_METADATA_ENTRIES 8192
SharedSSMeta ss_metadata[MAX_SS_METADATA_ENTRIES]; // Fixed-size array
_Atomic uint32_t ss_meta_count; // Used entries (atomic for lock-free Stage 2)
} SharedSuperSlabPool;
// Global singleton
extern SharedSuperSlabPool g_shared_pool;
// Initialize shared pool (idempotent, thread-safe wrt multiple callers on startup paths)
void shared_pool_init(void);
// Get/allocate a SuperSlab registered in the pool.
// Returns non-NULL on success, NULL on failure.
SuperSlab* shared_pool_acquire_superslab(void);
// Acquire a slab for class_idx from shared pool.
// On success:
// *ss_out = SuperSlab containing slab
// *slab_idx_out = slab index [0, SLABS_PER_SUPERSLAB_MAX)
// Returns 0 on success, non-zero on failure.
int shared_pool_acquire_slab(int class_idx, SuperSlab** ss_out, int* slab_idx_out);
// Release an empty slab back to pool (mark as unassigned).
// Caller must ensure TinySlabMeta.used == 0.
void shared_pool_release_slab(SuperSlab* ss, int slab_idx);
#ifdef __cplusplus
}
#endif