Files
hakmem/core/front/tiny_unified_cache.c
Moe Charm (CI) 03ba62df4d Phase 23 Unified Cache + PageFaultTelemetry generalization: Mid/VM page-fault bottleneck identified
Summary:
- Phase 23 Unified Cache: +30% improvement (Random Mixed 256B: 18.18M → 23.68M ops/s)
- PageFaultTelemetry: Extended to generic buckets (C0-C7, MID, L25, SSM)
- Measurement-driven decision: Mid/VM page-faults (80-100K) >> Tiny (6K) → prioritize Mid/VM optimization

Phase 23 Changes:
1. Unified Cache implementation (core/front/tiny_unified_cache.{c,h})
   - Direct SuperSlab carve (TLS SLL bypass)
   - Self-contained pop-or-refill pattern
   - ENV: HAKMEM_TINY_UNIFIED_CACHE=1, HAKMEM_TINY_UNIFIED_C{0-7}=128

2. Fast path pruning (tiny_alloc_fast.inc.h, tiny_free_fast_v2.inc.h)
   - Unified ON → direct cache access (skip all intermediate layers)
   - Alloc: unified_cache_pop_or_refill() → immediate fail to slow
   - Free: unified_cache_push() → fallback to SLL only if full

PageFaultTelemetry Changes:
3. Generic bucket architecture (core/box/pagefault_telemetry_box.{c,h})
   - PF_BUCKET_{C0-C7, MID, L25, SSM} for domain-specific measurement
   - Integration: hak_pool_try_alloc(), l25_alloc_new_run(), shared_pool_allocate_superslab_unlocked()

4. Measurement results (Random Mixed 500K / 256B):
   - Tiny C2-C7: 2-33 pages, high reuse (64-3.8 touches/page)
   - SSM: 512 pages (initialization footprint)
   - MID/L25: 0 (unused in this workload)
   - Mid/Large VM benchmarks: 80-100K page-faults (13-16x higher than Tiny)

Ring Cache Enhancements:
5. Hot Ring Cache (core/front/tiny_ring_cache.{c,h})
   - ENV: HAKMEM_TINY_HOT_RING_ENABLE=1, HAKMEM_TINY_HOT_RING_C{0-7}=size
   - Conditional compilation cleanup

Documentation:
6. Analysis reports
   - RANDOM_MIXED_BOTTLENECK_ANALYSIS.md: Page-fault breakdown
   - RANDOM_MIXED_SUMMARY.md: Phase 23 summary
   - RING_CACHE_ACTIVATION_GUIDE.md: Ring cache usage
   - CURRENT_TASK.md: Updated with Phase 23 results and Phase 24 plan

Next Steps (Phase 24):
- Target: Mid/VM PageArena/HotSpanBox (page-fault reduction 80-100K → 30-40K)
- Tiny SSM optimization deferred (low ROI, ~6K page-faults already optimal)
- Expected improvement: +30-50% for Mid/Large workloads

Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-17 02:47:58 +09:00

232 lines
8.8 KiB
C

// tiny_unified_cache.c - Phase 23: Unified Frontend Cache Implementation
#include "tiny_unified_cache.h"
#include "../box/unified_batch_box.h" // Phase 23-D: Box U2 batch alloc (deprecated in 23-E)
#include "../tiny_tls.h" // Phase 23-E: TinyTLSSlab, TinySlabMeta
#include "../tiny_box_geometry.h" // Phase 23-E: tiny_stride_for_class, tiny_slab_base_for_geometry
#include "../box/tiny_next_ptr_box.h" // Phase 23-E: tiny_next_read (freelist traversal)
#include "../hakmem_tiny_superslab.h" // Phase 23-E: SuperSlab
#include "../superslab/superslab_inline.h" // Phase 23-E: ss_active_add
#include "../box/pagefault_telemetry_box.h" // Phase 24: Box PageFaultTelemetry (Tiny page touch stats)
#include <stdlib.h>
#include <string.h>
// Phase 23-E: Forward declarations
extern __thread TinyTLSSlab g_tls_slabs[TINY_NUM_CLASSES]; // From hakmem_tiny_superslab.c
extern int superslab_refill(int class_idx); // From hakmem_tiny_superslab.c
// ============================================================================
// TLS Variables (defined here, extern in header)
// ============================================================================
__thread TinyUnifiedCache g_unified_cache[TINY_NUM_CLASSES];
// ============================================================================
// Metrics (Phase 23, optional for debugging)
// ============================================================================
#if !HAKMEM_BUILD_RELEASE
__thread uint64_t g_unified_cache_hit[TINY_NUM_CLASSES] = {0};
__thread uint64_t g_unified_cache_miss[TINY_NUM_CLASSES] = {0};
__thread uint64_t g_unified_cache_push[TINY_NUM_CLASSES] = {0};
__thread uint64_t g_unified_cache_full[TINY_NUM_CLASSES] = {0};
#endif
// ============================================================================
// Init (called at thread start or lazy on first access)
// ============================================================================
void unified_cache_init(void) {
if (!unified_cache_enabled()) return;
// Initialize all classes (C0-C7)
for (int cls = 0; cls < TINY_NUM_CLASSES; cls++) {
if (g_unified_cache[cls].slots != NULL) continue; // Already initialized
size_t cap = unified_capacity(cls);
g_unified_cache[cls].slots = (void**)calloc(cap, sizeof(void*));
if (!g_unified_cache[cls].slots) {
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[Unified-INIT] Failed to allocate C%d cache (%zu slots)\n", cls, cap);
fflush(stderr);
#endif
continue; // Skip this class, try others
}
g_unified_cache[cls].capacity = (uint16_t)cap;
g_unified_cache[cls].mask = (uint16_t)(cap - 1);
g_unified_cache[cls].head = 0;
g_unified_cache[cls].tail = 0;
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[Unified-INIT] C%d: %zu slots (%zu bytes)\n",
cls, cap, cap * sizeof(void*));
fflush(stderr);
#endif
}
}
// ============================================================================
// Shutdown (called at thread exit, optional)
// ============================================================================
void unified_cache_shutdown(void) {
if (!unified_cache_enabled()) return;
// TODO: Drain caches to SuperSlab before shutdown (prevent leak)
// Free cache buffers
for (int cls = 0; cls < TINY_NUM_CLASSES; cls++) {
if (g_unified_cache[cls].slots) {
free(g_unified_cache[cls].slots);
g_unified_cache[cls].slots = NULL;
}
}
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[Unified-SHUTDOWN] All caches freed\n");
fflush(stderr);
#endif
}
// ============================================================================
// Stats (Phase 23 metrics)
// ============================================================================
void unified_cache_print_stats(void) {
if (!unified_cache_enabled()) return;
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "\n[Unified-STATS] Unified Cache Metrics:\n");
for (int cls = 0; cls < TINY_NUM_CLASSES; cls++) {
uint64_t total_allocs = g_unified_cache_hit[cls] + g_unified_cache_miss[cls];
uint64_t total_frees = g_unified_cache_push[cls] + g_unified_cache_full[cls];
if (total_allocs == 0 && total_frees == 0) continue; // Skip unused classes
double hit_rate = (total_allocs > 0) ? (100.0 * g_unified_cache_hit[cls] / total_allocs) : 0.0;
double full_rate = (total_frees > 0) ? (100.0 * g_unified_cache_full[cls] / total_frees) : 0.0;
// Current occupancy
uint16_t count = (g_unified_cache[cls].tail >= g_unified_cache[cls].head)
? (g_unified_cache[cls].tail - g_unified_cache[cls].head)
: (g_unified_cache[cls].capacity - g_unified_cache[cls].head + g_unified_cache[cls].tail);
fprintf(stderr, " C%d: %u/%u slots occupied, hit=%llu miss=%llu (%.1f%% hit), push=%llu full=%llu (%.1f%% full)\n",
cls,
count, g_unified_cache[cls].capacity,
(unsigned long long)g_unified_cache_hit[cls],
(unsigned long long)g_unified_cache_miss[cls],
hit_rate,
(unsigned long long)g_unified_cache_push[cls],
(unsigned long long)g_unified_cache_full[cls],
full_rate);
}
fflush(stderr);
#endif
}
// ============================================================================
// Phase 23-E: Direct SuperSlab Carve (TLS SLL Bypass)
// ============================================================================
// Batch refill from SuperSlab (called on cache miss)
// Returns: BASE pointer (first block), or NULL if failed
// Design: Direct carve from SuperSlab to array (no TLS SLL intermediate layer)
void* unified_cache_refill(int class_idx) {
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
// Step 1: Ensure SuperSlab available
if (!tls->ss) {
if (!superslab_refill(class_idx)) return NULL;
tls = &g_tls_slabs[class_idx]; // Reload after refill
}
TinyUnifiedCache* cache = &g_unified_cache[class_idx];
// Step 2: Calculate available room in unified cache
int room = (int)cache->capacity - 1; // Leave 1 slot for full detection
if (cache->head > cache->tail) {
room = cache->head - cache->tail - 1;
} else if (cache->head < cache->tail) {
room = cache->capacity - (cache->tail - cache->head) - 1;
}
if (room <= 0) return NULL;
if (room > 128) room = 128; // Batch size limit
// Step 3: Direct carve from SuperSlab into local array (bypass TLS SLL!)
void* out[128];
int produced = 0;
TinySlabMeta* m = tls->meta;
size_t bs = tiny_stride_for_class(class_idx);
uint8_t* base = tls->slab_base
? tls->slab_base
: tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
while (produced < room) {
if (m->freelist) {
// Freelist pop
void* p = m->freelist;
m->freelist = tiny_next_read(class_idx, p);
// PageFaultTelemetry: record page touch for this BASE
pagefault_telemetry_touch(class_idx, p);
// ✅ CRITICAL: Restore header (overwritten by freelist link)
#if HAKMEM_TINY_HEADER_CLASSIDX
*(uint8_t*)p = (uint8_t)(0xa0 | (class_idx & 0x0f));
#endif
m->used++;
out[produced++] = p;
} else if (m->carved < m->capacity) {
// Linear carve (fresh block, no freelist link)
void* p = (void*)(base + ((size_t)m->carved * bs));
// PageFaultTelemetry: record page touch for this BASE
pagefault_telemetry_touch(class_idx, p);
// ✅ CRITICAL: Write header (new block)
#if HAKMEM_TINY_HEADER_CLASSIDX
*(uint8_t*)p = (uint8_t)(0xa0 | (class_idx & 0x0f));
#endif
m->carved++;
m->used++;
out[produced++] = p;
} else {
// SuperSlab exhausted → refill and retry
if (!superslab_refill(class_idx)) break;
// ✅ CRITICAL: Reload TLS pointers after refill (avoid stale pointer bug)
tls = &g_tls_slabs[class_idx];
m = tls->meta;
base = tls->slab_base
? tls->slab_base
: tiny_slab_base_for_geometry(tls->ss, tls->slab_idx);
}
}
if (produced == 0) return NULL;
// Step 4: Update active counter
ss_active_add(tls->ss, (uint32_t)produced);
// Step 5: Store blocks into unified cache (skip first, return it)
void* first = out[0];
for (int i = 1; i < produced; i++) {
cache->slots[cache->tail] = out[i];
cache->tail = (cache->tail + 1) & cache->mask;
}
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_miss[class_idx]++;
#endif
return first; // Return first block (BASE pointer)
}