Goal: Reduce backend transitions by increasing frontend hit rate Result: +2% best case, syscalls unchanged (root cause: SuperSlab churn) Implementation: 1. Cache capacity expansion (2-8x per-class) - Hot classes (C0-C3): 4x increase (512 slots) - Medium classes (C4-C6): 2-3x increase - Class 7 (1KB): 2x increase (128 slots) - Fast cache: 2x default capacity 2. Refill batch size increase (4-8x) - Global default: 16 → 64 (4x) - Hot classes: 128 (8x) via HAKMEM_TINY_REFILL_COUNT_HOT - Mid classes: 96 (6x) via HAKMEM_TINY_REFILL_COUNT_MID - Class 7: 64 → 128 (2x) - SFC refill: 64 → 128 (2x) 3. Adaptive sizing aggressive parameters - Grow threshold: 80% → 70% (expand earlier) - Shrink threshold: 20% → 10% (shrink less) - Growth rate: 2x → 1.5x (smoother growth) - Max capacity: 2048 → 4096 (2x ceiling) - Adapt frequency: Every 10 → 5 refills (more responsive) Performance Results (100K iterations): Before (Phase 9): - Performance: 9.71M ops/s - Syscalls: 1,729 (mmap:877, munmap:852) After (Phase 10): - Default settings: 8.77M ops/s (-9.7%) ⚠️ - Optimal ENV: 9.89M ops/s (+2%) ✅ - Syscalls: 1,729 (unchanged) ❌ Optimal ENV configuration: export HAKMEM_TINY_REFILL_COUNT_HOT=256 export HAKMEM_TINY_REFILL_COUNT_MID=192 Root Cause Analysis: Bottleneck is NOT TLS/SFC hit rate, but SuperSlab allocation churn: - 877 SuperSlabs allocated (877MB via mmap) - Phase 9 LRU cache not utilized (no frees during benchmark) - All SuperSlabs retained until program exit - System malloc: 9 syscalls vs HAKMEM: 1,729 syscalls (192x gap) Conclusion: TLS/SFC tuning cannot solve SuperSlab allocation policy problem. Next step: Phase 11 SuperSlab Prewarm strategy to eliminate mmap/munmap during benchmark execution. ChatGPT review: Strategy validated, Option A (Prewarm) recommended. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
180 lines
5.9 KiB
C
180 lines
5.9 KiB
C
// tiny_adaptive_sizing.c - Phase 2b: TLS Cache Adaptive Sizing Implementation
|
|
// Purpose: Hot classes get more cache → Better hit rate → Higher throughput
|
|
|
|
#include "tiny_adaptive_sizing.h"
|
|
#include "hakmem_tiny.h"
|
|
#include "box/tiny_next_ptr_box.h" // Phase E1-CORRECT: Box API
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
// TLS per-thread stats
|
|
__thread TLSCacheStats g_tls_cache_stats[TINY_NUM_CLASSES];
|
|
|
|
// Global enable flag (default: enabled, can disable via env)
|
|
int g_adaptive_sizing_enabled = 1;
|
|
|
|
// Logging enable flag (default: disabled; enable via HAKMEM_ADAPTIVE_LOG=1)
|
|
static int g_adaptive_logging_enabled = 0;
|
|
|
|
// Forward declaration for draining blocks
|
|
extern void tiny_superslab_return_block(void* ptr, int class_idx);
|
|
extern int hak_tiny_size_to_class(size_t size);
|
|
|
|
// ========== Initialization ==========
|
|
|
|
void adaptive_sizing_init(void) {
|
|
// Read environment variable
|
|
const char* env = getenv("HAKMEM_ADAPTIVE_SIZING");
|
|
if (env && atoi(env) == 0) {
|
|
g_adaptive_sizing_enabled = 0;
|
|
fprintf(stderr, "[ADAPTIVE] Adaptive sizing disabled via env\n");
|
|
return;
|
|
}
|
|
|
|
// Read logging flag
|
|
const char* log_env = getenv("HAKMEM_ADAPTIVE_LOG");
|
|
if (log_env && atoi(log_env) == 0) {
|
|
g_adaptive_logging_enabled = 0;
|
|
}
|
|
|
|
// Initialize stats for each class
|
|
for (int class_idx = 0; class_idx < TINY_NUM_CLASSES; class_idx++) {
|
|
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
|
|
stats->capacity = TLS_CACHE_INITIAL_CAPACITY; // Start with 64 slots
|
|
stats->high_water_mark = 0;
|
|
stats->refill_count = 0;
|
|
stats->shrink_count = 0;
|
|
stats->grow_count = 0;
|
|
stats->last_adapt_time = get_timestamp_ns();
|
|
}
|
|
|
|
if (g_adaptive_logging_enabled) {
|
|
fprintf(stderr, "[ADAPTIVE] Adaptive sizing initialized (initial_cap=%d, min=%d, max=%d)\n",
|
|
TLS_CACHE_INITIAL_CAPACITY, TLS_CACHE_MIN_CAPACITY, TLS_CACHE_MAX_CAPACITY);
|
|
}
|
|
}
|
|
|
|
// ========== Grow/Shrink Functions ==========
|
|
|
|
void grow_tls_cache(int class_idx) {
|
|
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
|
|
|
|
// Phase 10: Aggressive growth - add 50% instead of doubling
|
|
// This allows more gradual growth to match actual demand
|
|
size_t new_capacity = stats->capacity + (stats->capacity / 2);
|
|
if (new_capacity > TLS_CACHE_MAX_CAPACITY) {
|
|
new_capacity = TLS_CACHE_MAX_CAPACITY;
|
|
}
|
|
|
|
if (new_capacity == stats->capacity) {
|
|
return; // Already at max
|
|
}
|
|
|
|
size_t old_capacity = stats->capacity;
|
|
stats->capacity = new_capacity;
|
|
stats->grow_count++;
|
|
|
|
if (g_adaptive_logging_enabled) {
|
|
fprintf(stderr, "[TLS_CACHE] Grow class %d: %zu → %zu slots (+50%%, grow_count=%zu)\n",
|
|
class_idx, old_capacity, stats->capacity, stats->grow_count);
|
|
}
|
|
}
|
|
|
|
void drain_excess_blocks(int class_idx, int count) {
|
|
void** head = &g_tls_sll_head[class_idx];
|
|
int drained = 0;
|
|
|
|
while (*head && drained < count) {
|
|
void* block = *head;
|
|
*head = tiny_next_read(class_idx, block); // Pop from TLS list
|
|
|
|
// Return to SuperSlab (best effort - ignore failures)
|
|
// Note: tiny_superslab_return_block may not exist, use simpler approach
|
|
// Just drop the blocks for now (they'll be reclaimed by OS eventually)
|
|
// TODO: Integrate with proper SuperSlab return path
|
|
|
|
drained++;
|
|
if (g_tls_sll_count[class_idx] > 0) {
|
|
g_tls_sll_count[class_idx]--;
|
|
}
|
|
}
|
|
|
|
if (g_adaptive_logging_enabled && drained > 0) {
|
|
fprintf(stderr, "[TLS_CACHE] Drained %d excess blocks from class %d\n", drained, class_idx);
|
|
}
|
|
}
|
|
|
|
void shrink_tls_cache(int class_idx) {
|
|
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
|
|
|
|
size_t new_capacity = stats->capacity / 2;
|
|
if (new_capacity < TLS_CACHE_MIN_CAPACITY) {
|
|
new_capacity = TLS_CACHE_MIN_CAPACITY;
|
|
}
|
|
|
|
if (new_capacity == stats->capacity) {
|
|
return; // Already at min
|
|
}
|
|
|
|
// Evict excess blocks if current count > new_capacity
|
|
if (g_tls_sll_count[class_idx] > new_capacity) {
|
|
int excess = (int)(g_tls_sll_count[class_idx] - new_capacity);
|
|
drain_excess_blocks(class_idx, excess);
|
|
}
|
|
|
|
size_t old_capacity = stats->capacity;
|
|
stats->capacity = new_capacity;
|
|
stats->shrink_count++;
|
|
|
|
if (g_adaptive_logging_enabled) {
|
|
fprintf(stderr, "[TLS_CACHE] Shrink class %d: %zu → %zu slots (shrink_count=%zu)\n",
|
|
class_idx, old_capacity, stats->capacity, stats->shrink_count);
|
|
}
|
|
}
|
|
|
|
// ========== Adaptation Logic ==========
|
|
|
|
void adapt_tls_cache_size(int class_idx) {
|
|
if (!g_adaptive_sizing_enabled) return;
|
|
|
|
TLSCacheStats* stats = &g_tls_cache_stats[class_idx];
|
|
|
|
// Adapt every N refills or M seconds
|
|
uint64_t now = get_timestamp_ns();
|
|
int should_adapt = (stats->refill_count >= ADAPT_REFILL_THRESHOLD) ||
|
|
((now - stats->last_adapt_time) >= ADAPT_TIME_THRESHOLD_NS);
|
|
|
|
if (!should_adapt) {
|
|
return; // Too soon to adapt
|
|
}
|
|
|
|
// Avoid division by zero
|
|
if (stats->capacity == 0) {
|
|
stats->capacity = TLS_CACHE_INITIAL_CAPACITY;
|
|
return;
|
|
}
|
|
|
|
// Calculate usage ratio
|
|
double usage_ratio = (double)stats->high_water_mark / (double)stats->capacity;
|
|
|
|
// Decide: grow, shrink, or keep
|
|
if (usage_ratio > GROW_THRESHOLD) {
|
|
// High usage (>80%) → grow cache
|
|
grow_tls_cache(class_idx);
|
|
} else if (usage_ratio < SHRINK_THRESHOLD) {
|
|
// Low usage (<20%) → shrink cache
|
|
shrink_tls_cache(class_idx);
|
|
} else {
|
|
// Moderate usage (20-80%) → keep current size
|
|
if (g_adaptive_logging_enabled) {
|
|
fprintf(stderr, "[TLS_CACHE] Keep class %d at %zu slots (usage=%.1f%%)\n",
|
|
class_idx, stats->capacity, usage_ratio * 100.0);
|
|
}
|
|
}
|
|
|
|
// Reset stats for next window
|
|
stats->high_water_mark = g_tls_sll_count[class_idx];
|
|
stats->refill_count = 0;
|
|
stats->last_adapt_time = now;
|
|
}
|