#include "tiny_debug_ring.h" #include "hakmem_tiny.h" #include #include #include #include #include #include #define TINY_RING_IGNORE(expr) do { ssize_t _tw_ret = (expr); (void)_tw_ret; } while(0) #define TINY_RING_CAP 4096u typedef struct { uintptr_t ptr; uintptr_t aux; uint16_t event; uint16_t class_idx; } TinyRingEntry; static TinyRingEntry g_tiny_ring[TINY_RING_CAP]; static _Atomic uint32_t g_tiny_ring_head = 0; static int g_tiny_ring_enabled = 0; typedef struct { const char* name; size_t len; } TinyRingName; static TinyRingName tiny_ring_event_name(uint16_t event) { switch (event) { case TINY_RING_EVENT_ALLOC_ENTER: return (TinyRingName){"alloc_enter", 11}; case TINY_RING_EVENT_ALLOC_SUCCESS: return (TinyRingName){"alloc_ok", 8}; case TINY_RING_EVENT_ALLOC_NULL: return (TinyRingName){"alloc_null", 10}; case TINY_RING_EVENT_ALLOC_REFILL_START: return (TinyRingName){"refill_start", 12}; case TINY_RING_EVENT_ALLOC_REFILL_NULL: return (TinyRingName){"refill_null", 11}; case TINY_RING_EVENT_ALLOC_BIND: return (TinyRingName){"bind", 4}; case TINY_RING_EVENT_FREE_ENTER: return (TinyRingName){"free_enter", 10}; case TINY_RING_EVENT_FREE_FAST: return (TinyRingName){"free_fast", 8}; case TINY_RING_EVENT_FREE_REMOTE: return (TinyRingName){"free_remote", 11}; case TINY_RING_EVENT_FREE_LOCAL: return (TinyRingName){"free_local", 10}; case TINY_RING_EVENT_FREE_RETURN_MAG: return (TinyRingName){"free_mag", 7}; case TINY_RING_EVENT_SUPERSLAB_ADOPT: return (TinyRingName){"ss_adopt", 8}; case TINY_RING_EVENT_SUPERSLAB_ALLOC: return (TinyRingName){"ss_alloc", 8}; case TINY_RING_EVENT_SUPERSLAB_PUBLISH: return (TinyRingName){"ss_publish", 10}; case TINY_RING_EVENT_SUPERSLAB_ADOPT_FAIL: return (TinyRingName){"ss_adopt_fail", 13}; case TINY_RING_EVENT_REMOTE_PUSH: return (TinyRingName){"remote_push", 11}; case TINY_RING_EVENT_REMOTE_INVALID: return (TinyRingName){"remote_invalid", 14}; case TINY_RING_EVENT_REMOTE_DRAIN: return (TinyRingName){"remote_drain", 12}; case TINY_RING_EVENT_OWNER_ACQUIRE: return (TinyRingName){"owner_acq", 9}; case TINY_RING_EVENT_OWNER_RELEASE: return (TinyRingName){"owner_rel", 9}; case TINY_RING_EVENT_FRONT_BYPASS: return (TinyRingName){"front_bypass", 12}; case TINY_RING_EVENT_MAILBOX_PUBLISH: return (TinyRingName){"mailbox_publish", 15}; case TINY_RING_EVENT_MAILBOX_FETCH: return (TinyRingName){"mailbox_fetch", 13}; case TINY_RING_EVENT_MAILBOX_FETCH_NULL: return (TinyRingName){"mailbox_fetch_null", 18}; default: return (TinyRingName){"unknown", 7}; } } static void tiny_ring_write_dec(int fd, uint64_t value) { char buf[32]; int pos = 31; if (value == 0) { buf[pos--] = '0'; } else { while (value > 0 && pos >= 0) { buf[pos--] = (char)('0' + (value % 10)); value /= 10; } } int len = 31 - pos; TINY_RING_IGNORE(write(fd, buf + pos + 1, len)); } static void tiny_ring_write_hex(int fd, uintptr_t value) { static const char* hex = "0123456789abcdef"; char buf[2 + sizeof(uintptr_t) * 2 + 1]; buf[0] = '0'; buf[1] = 'x'; for (int i = (int)(sizeof(uintptr_t) * 2) - 1; i >= 0; --i) { buf[2 + i] = hex[value & 0xFu]; value >>= 4; } buf[2 + sizeof(uintptr_t) * 2] = '\0'; TINY_RING_IGNORE(write(fd, buf, 2 + sizeof(uintptr_t) * 2)); } static void tiny_debug_ring_dump(int fd, uintptr_t fault_addr) { const char hdr[] = "\n[Tiny Debug Ring Dump]\n"; TINY_RING_IGNORE(write(fd, hdr, sizeof(hdr) - 1)); const char addr_prefix[] = "fault_addr="; TINY_RING_IGNORE(write(fd, addr_prefix, sizeof(addr_prefix) - 1)); tiny_ring_write_hex(fd, fault_addr); TINY_RING_IGNORE(write(fd, "\n", 1)); uint32_t head = atomic_load_explicit(&g_tiny_ring_head, memory_order_relaxed); uint32_t count = head < TINY_RING_CAP ? head : TINY_RING_CAP; for (uint32_t i = 0; i < count; i++) { uint32_t idx = (head - count + i) & (TINY_RING_CAP - 1u); TinyRingEntry ent = g_tiny_ring[idx]; TINY_RING_IGNORE(write(fd, "[", 1)); tiny_ring_write_dec(fd, idx); const char mid[] = "] event="; TINY_RING_IGNORE(write(fd, mid, sizeof(mid) - 1)); TinyRingName name = tiny_ring_event_name(ent.event); TINY_RING_IGNORE(write(fd, name.name, name.len)); const char cls[] = " class="; TINY_RING_IGNORE(write(fd, cls, sizeof(cls) - 1)); tiny_ring_write_dec(fd, ent.class_idx); const char ptr_prefix[] = " ptr="; TINY_RING_IGNORE(write(fd, ptr_prefix, sizeof(ptr_prefix) - 1)); tiny_ring_write_hex(fd, ent.ptr); const char aux_prefix[] = " aux="; TINY_RING_IGNORE(write(fd, aux_prefix, sizeof(aux_prefix) - 1)); tiny_ring_write_hex(fd, ent.aux); TINY_RING_IGNORE(write(fd, "\n", 1)); } } static void tiny_debug_ring_sigsegv(int signo, siginfo_t* info, void* uctx) { uintptr_t ip = 0; #if defined(__x86_64__) if (uctx) { ucontext_t* uc = (ucontext_t*)uctx; #ifdef REG_RIP ip = (uintptr_t)uc->uc_mcontext.gregs[REG_RIP]; #else (void)uc; // REG_RIP not available on this platform #endif } #endif if (g_tiny_ring_enabled) { uintptr_t fault = info ? (uintptr_t)info->si_addr : 0; #if defined(__x86_64__) #ifdef REG_RIP if (ip != 0) { const char rip_prefix[] = "rip="; TINY_RING_IGNORE(write(STDERR_FILENO, rip_prefix, sizeof(rip_prefix) - 1)); tiny_ring_write_hex(STDERR_FILENO, ip); TINY_RING_IGNORE(write(STDERR_FILENO, "\n", 1)); } #endif #endif tiny_debug_ring_dump(STDERR_FILENO, fault); } const char msg[] = "[Tiny Debug Ring] captured SIGSEGV\n"; TINY_RING_IGNORE(write(STDERR_FILENO, msg, sizeof(msg) - 1)); #if defined(__x86_64__) #ifdef REG_RIP if (ip != 0) { const char rip_prefix[] = "rip="; TINY_RING_IGNORE(write(STDERR_FILENO, rip_prefix, sizeof(rip_prefix) - 1)); tiny_ring_write_hex(STDERR_FILENO, ip); TINY_RING_IGNORE(write(STDERR_FILENO, "\n", 1)); } #endif #endif _exit(128 + signo); } static void tiny_debug_ring_sigusr(int signo, siginfo_t* info, void* uctx) { (void)signo; (void)info; (void)uctx; if (g_tiny_ring_enabled) { tiny_debug_ring_dump(STDERR_FILENO, 0); const char msg[] = "[Tiny Debug Ring] SIGUSR2 dump\n"; TINY_RING_IGNORE(write(STDERR_FILENO, msg, sizeof(msg) - 1)); } } void tiny_debug_ring_init(void) { if (g_tiny_ring_enabled) return; const char* env = getenv("HAKMEM_TINY_TRACE_RING"); if (!(env && *env && env[0] != '0')) { return; } g_tiny_ring_enabled = 1; struct sigaction sa; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_SIGINFO | SA_RESETHAND; sa.sa_sigaction = tiny_debug_ring_sigsegv; sigaction(SIGSEGV, &sa, NULL); struct sigaction su; sigemptyset(&su.sa_mask); su.sa_flags = SA_SIGINFO | SA_RESTART; su.sa_sigaction = tiny_debug_ring_sigusr; sigaction(SIGUSR2, &su, NULL); } void tiny_debug_ring_record(uint16_t event, uint16_t class_idx, void* ptr, uintptr_t aux) { if (!g_tiny_ring_enabled) return; uint32_t idx = atomic_fetch_add_explicit(&g_tiny_ring_head, 1u, memory_order_relaxed); TinyRingEntry entry; entry.ptr = (uintptr_t)ptr; entry.aux = aux; entry.event = event; entry.class_idx = class_idx; g_tiny_ring[idx & (TINY_RING_CAP - 1u)] = entry; } __attribute__((constructor)) static void tiny_debug_ring_ctor(void) { tiny_debug_ring_init(); }