// malloc_tiny_fast.h - Phase 26: Front Gate Unification (Tiny Fast Path) // // Goal: Eliminate 3-layer overhead (malloc → hak_alloc_at → wrapper → tiny_alloc_fast) // Target: +10-15% performance (11.35M → 12.5-13.5M ops/s) // // Design (ChatGPT analysis): // - Replace: malloc → hak_alloc_at (236 lines) → wrapper (diagnostics) → tiny_alloc_fast // - With: malloc → malloc_tiny_fast (single-layer, direct to Unified Cache) // - Preserves: Safety checks (lock depth, initializing, LD_SAFE, jemalloc block) // - Leverages: Phase 23 Unified Cache (tcache-style, 2-3 cache misses) // // Performance: // - Current overhead: malloc(8.97%) + routing + wrapper(3.63%) + tiny(5.37%) = 17.97% // - BenchFast ceiling: 8-10 instructions (~1-2% overhead) // - Gap: ~16% // - Target: Close half the gap (+10-15% improvement) // // ENV Variables: // HAKMEM_FRONT_GATE_UNIFIED=1 # Enable Front Gate Unification (default: 0, OFF) #ifndef HAK_FRONT_MALLOC_TINY_FAST_H #define HAK_FRONT_MALLOC_TINY_FAST_H #include #include #include #include #include // For pthread_self() in cross-thread check #include "../hakmem_build_flags.h" #include "../hakmem_tiny_config.h" // For TINY_NUM_CLASSES #include "../hakmem_super_registry.h" // For cross-thread owner check #include "../superslab/superslab_inline.h" // For ss_fast_lookup, slab_index_for (Phase 12) #include "../box/ss_slab_meta_box.h" // For ss_slab_meta_owner_tid_low_get #include "../box/free_remote_box.h" // For tiny_free_remote_box #include "tiny_unified_cache.h" // For unified_cache_pop_or_refill #include "../tiny_region_id.h" // For tiny_region_id_write_header #include "../hakmem_tiny.h" // For hak_tiny_size_to_class #include "../box/tiny_front_hot_box.h" // Phase 4-Step2: Hot Path Box #include "../box/tiny_front_cold_box.h" // Phase 4-Step2: Cold Path Box #include "../box/tiny_c7_hotbox.h" // Optional: C7 専用ホットボックス #include "../box/tiny_heap_box.h" // TinyHeap 汎用 Box #include "../box/tiny_hotheap_v2_box.h" // TinyHotHeap v2 (Phase31 A/B) #include "../box/smallobject_hotbox_v3_box.h" // SmallObject HotHeap v3 skeleton #include "../box/smallobject_hotbox_v4_box.h" // SmallObject HotHeap v4 (C7 stub) #include "../box/smallobject_hotbox_v5_box.h" // SmallObject HotHeap v5 (C6-only route stub, Phase v5-1) #include "../box/smallobject_core_v6_box.h" // SmallObject Core v6 (C6-only route stub, Phase v6-1) #include "../box/tiny_c7_ultra_box.h" // C7 ULTRA stub (UF-1, delegates to v3) #include "../box/tiny_front_v3_env_box.h" // Tiny front v3 snapshot gate #include "../box/tiny_heap_env_box.h" // ENV gate for TinyHeap front (A/B) #include "../box/tiny_route_env_box.h" // Route snapshot (Heap vs Legacy) #include "../box/tiny_front_stats_box.h" // Front class distribution counters // Helper: current thread id (low 32 bits) for owner check #ifndef TINY_SELF_U32_LOCAL_DEFINED #define TINY_SELF_U32_LOCAL_DEFINED static inline uint32_t tiny_self_u32_local(void) { return (uint32_t)(uintptr_t)pthread_self(); } #endif // ============================================================================ // ENV Control (cached, lazy init) // ============================================================================ // Enable flag (default: 0, OFF) static inline int front_gate_unified_enabled(void) { static int g_enable = -1; if (__builtin_expect(g_enable == -1, 0)) { const char* e = getenv("HAKMEM_FRONT_GATE_UNIFIED"); g_enable = (e && *e && *e == '0') ? 0 : 1; // default ON #if !HAKMEM_BUILD_RELEASE if (g_enable) { fprintf(stderr, "[FrontGate-INIT] front_gate_unified_enabled() = %d\n", g_enable); fflush(stderr); } #endif } return g_enable; } // ============================================================================ // Phase 4-Step2: malloc_tiny_fast() - Hot/Cold Path Box (ACTIVE) // ============================================================================ // Ultra-thin Tiny allocation using Hot/Cold Path Box (Phase 4-Step2) // // IMPROVEMENTS over Phase 26-A: // - Branch reduction: Hot path has only 1 branch (cache empty check) // - Branch hints: TINY_HOT_LIKELY/UNLIKELY for better CPU prediction // - Hot/Cold separation: Keeps hot path small (better i-cache locality) // - Explicit fallback: Clear hot→cold transition // // PERFORMANCE: // - Baseline (Phase 26-A, no PGO): 53.3 M ops/s // - Hot/Cold Box (no PGO): 57.2 M ops/s (+7.3%) // // DESIGN: // 1. size → class_idx (same as Phase 26-A) // 2. Hot path: tiny_hot_alloc_fast() - cache hit (1 branch) // 3. Cold path: tiny_cold_refill_and_alloc() - cache miss (noinline, cold) // // Preconditions: // - Called AFTER malloc() safety checks (lock depth, initializing, LD_SAFE) // - size <= tiny_get_max_size() (caller verified) // Returns: // - USER pointer on success // - NULL on failure (caller falls back to normal path) // __attribute__((always_inline)) static inline void* malloc_tiny_fast(size_t size) { const int front_v3_on = tiny_front_v3_enabled(); const TinyFrontV3Snapshot* front_snap = __builtin_expect(front_v3_on, 0) ? tiny_front_v3_snapshot_get() : NULL; const bool route_fast_on = front_v3_on && tiny_front_v3_lut_enabled() && tiny_front_v3_route_fast_enabled(); int class_idx = -1; tiny_route_kind_t route = TINY_ROUTE_LEGACY; bool route_trusted = false; if (front_v3_on && tiny_front_v3_lut_enabled()) { const TinyFrontV3SizeClassEntry* e = tiny_front_v3_lut_lookup(size); if (e && e->class_idx != TINY_FRONT_V3_INVALID_CLASS) { class_idx = (int)e->class_idx; route = (tiny_route_kind_t)e->route_kind; route_trusted = route_fast_on; } } if (__builtin_expect(class_idx < 0 || class_idx >= TINY_NUM_CLASSES, 0)) { class_idx = hak_tiny_size_to_class(size); if (__builtin_expect(class_idx < 0 || class_idx >= TINY_NUM_CLASSES, 0)) { return NULL; } route = tiny_route_for_class((uint8_t)class_idx); route_trusted = false; } else if (!route_trusted && route != TINY_ROUTE_LEGACY && route != TINY_ROUTE_HEAP && route != TINY_ROUTE_HOTHEAP_V2 && route != TINY_ROUTE_SMALL_HEAP_V3 && route != TINY_ROUTE_SMALL_HEAP_V4 && route != TINY_ROUTE_SMALL_HEAP_V5 && route != TINY_ROUTE_SMALL_HEAP_V6) { route = tiny_route_for_class((uint8_t)class_idx); } tiny_front_alloc_stat_inc(class_idx); // C7 ULTRA stub (UF-1): delegates to v3, ENV gated if (class_idx == 7 && tiny_front_v3_enabled() && tiny_front_v3_c7_ultra_enabled() && small_heap_v3_c7_enabled()) { void* ultra_p = tiny_c7_ultra_alloc(size); if (ultra_p) { return ultra_p; } // fallback to existing route on miss } switch (route) { case TINY_ROUTE_SMALL_HEAP_V6: { // Phase v6-6: Inline hot path (no route check, direct TLS pop) SmallHeapCtxV6* ctx_v6 = small_heap_ctx_v6(); void* v6p = NULL; if (class_idx == 6) { v6p = small_alloc_c6_hot_v6(ctx_v6); if (TINY_HOT_UNLIKELY(!v6p)) { v6p = small_alloc_cold_v6(6, ctx_v6); } } else if (class_idx == 5) { v6p = small_alloc_c5_hot_v6(ctx_v6); if (TINY_HOT_UNLIKELY(!v6p)) { v6p = small_alloc_cold_v6(5, ctx_v6); } } if (TINY_HOT_LIKELY(v6p != NULL)) { return v6p; } // fallthrough to v5/v2/v1 __attribute__((fallthrough)); } case TINY_ROUTE_SMALL_HEAP_V3: { void* v3p = so_alloc((uint32_t)class_idx); if (TINY_HOT_LIKELY(v3p != NULL)) { return v3p; } so_v3_record_alloc_fallback((uint8_t)class_idx); // fallthrough to v2/v1 __attribute__((fallthrough)); } case TINY_ROUTE_SMALL_HEAP_V4: { void* v4p = small_heap_alloc_fast_v4(small_heap_ctx_v4_get(), class_idx); if (TINY_HOT_LIKELY(v4p != NULL)) { return v4p; } so_v3_record_alloc_fallback((uint8_t)class_idx); // fallthrough to v5/v2/v1 __attribute__((fallthrough)); } case TINY_ROUTE_SMALL_HEAP_V5: { // Phase v5-1: C6-only route stub (v1/pool fallback) SmallHeapCtxV5* ctx = small_heap_ctx_v5(); void* v5p = small_alloc_fast_v5(size, (uint32_t)class_idx, ctx); if (TINY_HOT_LIKELY(v5p != NULL)) { return v5p; } // fallthrough to v2/v1 __attribute__((fallthrough)); } case TINY_ROUTE_HOTHEAP_V2: { void* v2p = tiny_hotheap_v2_alloc((uint8_t)class_idx); if (TINY_HOT_LIKELY(v2p != NULL)) { return v2p; } tiny_hotheap_v2_record_route_fallback((uint8_t)class_idx); // fallthrough to TinyHeap v1 __attribute__((fallthrough)); } case TINY_ROUTE_HEAP: { void* heap_ptr = NULL; if (class_idx == 7) { heap_ptr = tiny_c7_alloc_fast(size); } else { heap_ptr = tiny_heap_alloc_class_fast(tiny_heap_ctx_for_thread(), class_idx, size); } if (heap_ptr) { return heap_ptr; } break; } case TINY_ROUTE_LEGACY: default: break; } // Legacy Tiny front void* ptr = NULL; if (!front_snap || front_snap->unified_cache_on) { ptr = tiny_hot_alloc_fast(class_idx); } if (TINY_HOT_LIKELY(ptr != NULL)) { return ptr; } return tiny_cold_refill_and_alloc(class_idx); } // ============================================================================ // Phase 26-B: free_tiny_fast() - Ultra-thin Tiny deallocation // ============================================================================ // Single-layer Tiny deallocation (bypasses hak_free_at + wrapper + diagnostics) // Preconditions: // - ptr is from malloc_tiny_fast() (has valid header) // - Front Gate Unified is enabled // Returns: // - 1 on success (pushed to Unified Cache) // - 0 on failure (caller falls back to normal free path) __attribute__((always_inline)) static inline int free_tiny_fast(void* ptr) { if (__builtin_expect(!ptr, 0)) return 0; #if HAKMEM_TINY_HEADER_CLASSIDX // 1. ページ境界ガード: // ptr がページ先頭 (offset==0) の場合、ptr-1 は別ページか未マップ領域になる可能性がある。 // その場合はヘッダ読みを行わず、通常 free 経路にフォールバックする。 uintptr_t off = (uintptr_t)ptr & 0xFFFu; if (__builtin_expect(off == 0, 0)) { return 0; } // 2. Fast header magic validation (必須) // Release ビルドでは tiny_region_id_read_header() が magic を省略するため、 // ここで自前に Tiny 専用ヘッダ (0xA0) を検証しておく。 uint8_t* header_ptr = (uint8_t*)ptr - 1; uint8_t header = *header_ptr; uint8_t magic = header & 0xF0u; if (__builtin_expect(magic != HEADER_MAGIC, 0)) { // Tiny ヘッダではない → Mid/Large/外部ポインタなので通常 free 経路へ return 0; } // 3. class_idx 抽出(下位4bit) int class_idx = (int)(header & HEADER_CLASS_MASK); if (__builtin_expect(class_idx < 0 || class_idx >= TINY_NUM_CLASSES, 0)) { return 0; } // 4. BASE を計算して Unified Cache に push void* base = (void*)((char*)ptr - 1); tiny_front_free_stat_inc(class_idx); // C7 ULTRA stub (UF-1): delegates to v3, ENV gated if (class_idx == 7 && tiny_front_v3_enabled() && tiny_front_v3_c7_ultra_enabled() && small_heap_v3_c7_enabled()) { tiny_c7_ultra_free(base); return 1; } // C7 v3 fast classify: bypass classify_ptr/ss_map_lookup for clear hits if (class_idx == 7 && tiny_front_v3_enabled() && tiny_ptr_fast_classify_enabled() && small_heap_v3_c7_enabled() && smallobject_hotbox_v3_can_own_c7(base)) { so_free(7, base); return 1; } tiny_route_kind_t route = tiny_route_for_class((uint8_t)class_idx); if ((class_idx == 7 || class_idx == 6) && route == TINY_ROUTE_SMALL_HEAP_V4 && tiny_ptr_fast_classify_v4_enabled() && smallobject_hotbox_v4_can_own(class_idx, base)) { small_heap_free_fast_v4(small_heap_ctx_v4_get(), class_idx, base); return 1; } const int use_tiny_heap = tiny_route_is_heap_kind(route); const TinyFrontV3Snapshot* front_snap = __builtin_expect(tiny_front_v3_enabled(), 0) ? tiny_front_v3_snapshot_get() : NULL; // TWO-SPEED: SuperSlab registration check is DEBUG-ONLY to keep HOT PATH fast. // In Release builds, we trust header magic (0xA0) as sufficient validation. #if !HAKMEM_BUILD_RELEASE // 5. Superslab 登録確認(誤分類防止) SuperSlab* ss_guard = hak_super_lookup(ptr); if (__builtin_expect(!(ss_guard && ss_guard->magic == SUPERSLAB_MAGIC), 0)) { return 0; // hakmem 管理外 → 通常 free 経路へ } #endif // !HAKMEM_BUILD_RELEASE // Cross-thread free detection (Larson MT crash fix, ENV gated) + TinyHeap free path { static __thread int g_larson_fix = -1; if (__builtin_expect(g_larson_fix == -1, 0)) { const char* e = getenv("HAKMEM_TINY_LARSON_FIX"); g_larson_fix = (e && *e && *e != '0') ? 1 : 0; #if !HAKMEM_BUILD_RELEASE fprintf(stderr, "[LARSON_FIX_INIT] g_larson_fix=%d (env=%s)\n", g_larson_fix, e ? e : "NULL"); fflush(stderr); #endif } if (__builtin_expect(g_larson_fix || use_tiny_heap, 0)) { // Phase 12 optimization: Use fast mask-based lookup (~5-10 cycles vs 50-100) SuperSlab* ss = ss_fast_lookup(base); if (ss) { int slab_idx = slab_index_for(ss, base); if (__builtin_expect(slab_idx >= 0 && slab_idx < ss_slabs_capacity(ss), 1)) { uint32_t self_tid = tiny_self_u32_local(); uint8_t owner_tid_low = ss_slab_meta_owner_tid_low_get(ss, slab_idx); TinySlabMeta* meta = &ss->slabs[slab_idx]; // LARSON FIX: Use bits 8-15 for comparison (pthread TIDs aligned to 256 bytes) uint8_t self_tid_cmp = (uint8_t)((self_tid >> 8) & 0xFFu); #if !HAKMEM_BUILD_RELEASE static _Atomic uint64_t g_owner_check_count = 0; uint64_t oc = atomic_fetch_add(&g_owner_check_count, 1); if (oc < 10) { fprintf(stderr, "[LARSON_FIX] Owner check: ptr=%p owner_tid_low=0x%02x self_tid_cmp=0x%02x self_tid=0x%08x match=%d\n", ptr, owner_tid_low, self_tid_cmp, self_tid, (owner_tid_low == self_tid_cmp)); fflush(stderr); } #endif if (__builtin_expect(owner_tid_low != self_tid_cmp, 0)) { // Cross-thread free → route to remote queue instead of poisoning TLS cache #if !HAKMEM_BUILD_RELEASE static _Atomic uint64_t g_cross_thread_count = 0; uint64_t ct = atomic_fetch_add(&g_cross_thread_count, 1); if (ct < 20) { fprintf(stderr, "[LARSON_FIX] Cross-thread free detected! ptr=%p owner_tid_low=0x%02x self_tid_cmp=0x%02x self_tid=0x%08x\n", ptr, owner_tid_low, self_tid_cmp, self_tid); fflush(stderr); } #endif if (tiny_free_remote_box(ss, slab_idx, meta, ptr, self_tid)) { return 1; // handled via remote queue } return 0; // remote push failed; fall back to normal path } // Same-thread + TinyHeap route → route-based free if (__builtin_expect(use_tiny_heap, 0)) { switch (route) { case TINY_ROUTE_SMALL_HEAP_V6: { // Phase v6-6: Inline hot path (no route check, direct TLS push) SmallHeapCtxV6* ctx_v6 = small_heap_ctx_v6(); int handled = 0; if (class_idx == 6) { handled = small_free_c6_hot_v6(ctx_v6, base); } else if (class_idx == 5) { handled = small_free_c5_hot_v6(ctx_v6, base); } if (!handled) { small_free_cold_v6(base, (uint32_t)class_idx); } return 1; } case TINY_ROUTE_SMALL_HEAP_V5: { // Phase v5-2: C6-only full implementation SmallHeapCtxV5* ctx = small_heap_ctx_v5(); small_free_fast_v5(base, (uint32_t)class_idx, ctx); return 1; } case TINY_ROUTE_SMALL_HEAP_V4: if (class_idx == 7 || class_idx == 6 || class_idx == 5) { small_heap_free_fast_v4(small_heap_ctx_v4_get(), class_idx, base); return 1; } break; // fallthrough to default case TINY_ROUTE_SMALL_HEAP_V3: so_free((uint32_t)class_idx, base); return 1; case TINY_ROUTE_HOTHEAP_V2: tiny_hotheap_v2_free((uint8_t)class_idx, base, meta); return 1; case TINY_ROUTE_HEAP: { tiny_heap_ctx_t* ctx = tiny_heap_ctx_for_thread(); if (class_idx == 7) { tiny_c7_free_fast_with_meta(ss, slab_idx, base); } else { tiny_heap_free_class_fast_with_meta(ctx, class_idx, ss, slab_idx, base); } return 1; } default: break; } } } } if (use_tiny_heap) { // fallback: lookup failed but TinyHeap front is ON → use generic TinyHeap free if (route == TINY_ROUTE_HOTHEAP_V2) { tiny_hotheap_v2_record_free_fallback((uint8_t)class_idx); } else if (route == TINY_ROUTE_SMALL_HEAP_V3 || route == TINY_ROUTE_SMALL_HEAP_V4) { so_v3_record_free_fallback((uint8_t)class_idx); } tiny_heap_free_class_fast(tiny_heap_ctx_for_thread(), class_idx, ptr); return 1; } } } // Debug: Log free operations (first 5000, all classes) #if !HAKMEM_BUILD_RELEASE { extern _Atomic uint64_t g_debug_op_count; extern __thread TinyTLSSLL g_tls_sll[]; uint64_t op = atomic_fetch_add(&g_debug_op_count, 1); // Note: Shares g_debug_op_count with alloc logging, so bump the window. if (op < 5000) { fprintf(stderr, "[OP#%04lu FREE] cls=%d ptr=%p base=%p from=free_tiny_fast tls_count_before=%u\n", (unsigned long)op, class_idx, ptr, base, g_tls_sll[class_idx].count); fflush(stderr); } } #endif int pushed = 0; if (!front_snap || front_snap->unified_cache_on) { pushed = unified_cache_push(class_idx, HAK_BASE_FROM_RAW(base)); } if (__builtin_expect(pushed, 1)) { return 1; // Success } // Unified Cache full → 通常 free 経路へ return 0; #else // No header mode - fall back to normal free return 0; #endif } #endif // HAK_FRONT_MALLOC_TINY_FAST_H