# Pool Hot Path Bottleneck Analysis ## Executive Summary **Root Cause**: Pool allocator is 100x slower than expected due to **pthread_mutex_lock in the hot path** (line 267 of `core/box/pool_core_api.inc.h`). **Current Performance**: 434,611 ops/s **Expected Performance**: 50-80M ops/s **Gap**: ~100x slower ## Critical Finding: Mutex in Hot Path ### The Smoking Gun (Line 267) ```c // core/box/pool_core_api.inc.h:267 pthread_mutex_t* lock = &g_pool.freelist_locks[class_idx][shard_idx].m; pthread_mutex_lock(lock); // 💀 FULL KERNEL MUTEX IN HOT PATH ``` **Impact**: Every allocation that misses ALL TLS caches falls into this mutex lock: - **Mutex overhead**: 100-500 cycles (kernel syscall) - **Contention overhead**: 1000+ cycles under MT load - **Cache invalidation**: 50-100 cycles from cache line bouncing ## Detailed Bottleneck Breakdown ### Pool Allocator Hot Path (hak_pool_try_alloc) ```c Line 234-236: TC drain check // ~20-30 cycles Line 236: TLS ring check // ~10-20 cycles Line 237: TLS LIFO check // ~10-20 cycles Line 240-256: Trylock probe loop // ~100-300 cycles (3 attempts!) Line 258-261: Active page checks // ~30-50 cycles (3 pages!) Line 267: pthread_mutex_lock // 💀 100-500+ cycles Line 280: refill_freelist // ~1000+ cycles (mmap) ``` **Total worst case**: 1500-2500 cycles per allocation ### Tiny Allocator Hot Path (tiny_alloc_fast) ```c Line 205: Load TLS head // 1 cycle Line 206: Check NULL // 1 cycle Line 238: Update head = *next // 2-3 cycles Return // 1 cycle ``` **Total**: 5-6 cycles (300x faster!) ## Performance Analysis ### Cycle Cost Breakdown | Operation | Pool (cycles) | Tiny (cycles) | Ratio | |-----------|---------------|---------------|-------| | TLS cache check | 60-100 | 2-3 | 30x slower | | Trylock probes | 100-300 | 0 | ∞ | | Mutex lock | 100-500 | 0 | ∞ | | Atomic operations | 50-100 | 0 | ∞ | | Random generation | 10-20 | 0 | ∞ | | **Total Hot Path** | **320-1020** | **5-6** | **64-170x slower** | ### Why Tiny is Fast 1. **Single TLS freelist**: Direct pointer pop (3-4 instructions) 2. **No locks**: Pure TLS, zero synchronization 3. **No atomics**: Thread-local only 4. **Simple refill**: Batch from SuperSlab when empty ### Why Pool is Slow 1. **Multiple cache layers**: Ring + LIFO + Active pages (complex checks) 2. **Trylock probes**: Up to 3 mutex attempts before main lock 3. **Full mutex lock**: Kernel syscall in hot path 4. **Atomic remote lists**: Memory barriers and cache invalidation 5. **Per-allocation RNG**: Extra cycles for sampling ## Root Causes ### 1. Over-Engineered Architecture Pool has 5 layers of caching before hitting the mutex: - TC (Thread Cache) drain - TLS ring - TLS LIFO - Active pages (3 of them!) - Trylock probes Each layer adds branches and cycles, yet still falls back to mutex! ### 2. Mutex-Protected Freelist The core freelist is protected by **64 mutexes** (7 classes × 8 shards + extra), but this still causes massive contention under MT load. ### 3. Complex Shard Selection ```c // Line 238-239 int shard_idx = hak_pool_get_shard_index(site_id); int s0 = choose_nonempty_shard(class_idx, shard_idx); ``` Requires hash computation and nonempty mask checking. ## Proposed Fix: Lock-Free Pool Allocator ### Solution 1: Copy Tiny's Approach (Recommended) **Effort**: 4-6 hours **Expected Performance**: 40-60M ops/s Replace entire Pool hot path with Tiny-style TLS freelist: ```c void* hak_pool_try_alloc_fast(size_t size, uintptr_t site_id) { int class_idx = hak_pool_get_class_index(size); // Simple TLS freelist (like Tiny) void* head = g_tls_pool_head[class_idx]; if (head) { g_tls_pool_head[class_idx] = *(void**)head; return (char*)head + HEADER_SIZE; } // Refill from backend (batch, no lock) return pool_refill_and_alloc(class_idx); } ``` ### Solution 2: Remove Mutex, Use CAS **Effort**: 8-12 hours **Expected Performance**: 20-30M ops/s Replace mutex with lock-free CAS operations: ```c // Instead of pthread_mutex_lock PoolBlock* old_head; do { old_head = atomic_load(&g_pool.freelist[class_idx][shard_idx]); if (!old_head) break; } while (!atomic_compare_exchange_weak(&g_pool.freelist[class_idx][shard_idx], &old_head, old_head->next)); ``` ### Solution 3: Increase TLS Cache Hit Rate **Effort**: 2-3 hours **Expected Performance**: 5-10M ops/s (partial improvement) - Increase POOL_L2_RING_CAP from 64 to 256 - Pre-warm TLS caches at init (like Tiny Phase 7) - Batch refill 64 blocks at once ## Implementation Plan ### Quick Win (2 hours) 1. Increase `POOL_L2_RING_CAP` to 256 2. Add pre-warming in `hak_pool_init()` 3. Test performance ### Full Fix (6 hours) 1. Create `pool_fast_path.inc.h` (copy from tiny_alloc_fast.inc.h) 2. Replace `hak_pool_try_alloc` with simple TLS freelist 3. Implement batch refill without locks 4. Add feature flag for rollback safety 5. Test MT performance ## Expected Results With proposed fix (Solution 1): - **Current**: 434,611 ops/s - **Expected**: 40-60M ops/s - **Improvement**: 92-138x faster - **vs System**: Should achieve 70-90% of System malloc ## Files to Modify 1. `core/box/pool_core_api.inc.h`: Replace lines 229-286 2. `core/hakmem_pool.h`: Add TLS freelist declarations 3. Create `core/pool_fast_path.inc.h`: New fast path implementation ## Success Metrics ✅ Pool allocation hot path < 20 cycles ✅ No mutex locks in common case ✅ TLS hit rate > 95% ✅ Performance > 40M ops/s for 8-32KB allocations ✅ MT scaling without contention