/** * hakmem_smallmid.c - Small-Mid Allocator Front Box Implementation * * Phase 17-1: Front Box Only (No Dedicated SuperSlab Backend) * * Strategy (ChatGPT reviewed): * - Thin front layer with TLS freelist (256B/512B/1KB) * - Backend: Use existing Tiny SuperSlab/SharedPool APIs * - Goal: Measure performance impact before building dedicated backend * - A/B test: Does Small-Mid front improve 256-1KB performance? * * Architecture: * - 3 size classes: 256B/512B/1KB (reduced from 5) * - TLS freelist for fast alloc/free (static inline) * - Backend: Call Tiny allocator APIs (reuse existing infrastructure) * - ENV controlled (HAKMEM_SMALLMID_ENABLE=1) * * Created: 2025-11-16 * Updated: 2025-11-16 (Phase 17-1 revision - Front Box only) */ #include "hakmem_smallmid.h" #include "hakmem_build_flags.h" #include "hakmem_smallmid_superslab.h" // Phase 17-2: Dedicated backend #include "tiny_region_id.h" // For header writing #include #include // ============================================================================ // TLS State // ============================================================================ __thread void* g_smallmid_tls_head[SMALLMID_NUM_CLASSES] = {NULL}; __thread uint32_t g_smallmid_tls_count[SMALLMID_NUM_CLASSES] = {0}; // ============================================================================ // Size Class Table (Phase 17-1: 3 classes) // ============================================================================ const size_t g_smallmid_class_sizes[SMALLMID_NUM_CLASSES] = { 256, // SM0: 256B 512, // SM1: 512B 1024 // SM2: 1KB }; // ============================================================================ // Global State // ============================================================================ static pthread_mutex_t g_smallmid_init_lock = PTHREAD_MUTEX_INITIALIZER; static int g_smallmid_initialized = 0; static int g_smallmid_enabled = -1; // -1 = not checked, 0 = disabled, 1 = enabled // ============================================================================ // Statistics (Debug) // ============================================================================ #ifdef HAKMEM_SMALLMID_STATS SmallMidStats g_smallmid_stats = {0}; void smallmid_print_stats(void) { fprintf(stderr, "\n=== Small-Mid Allocator Statistics ===\n"); fprintf(stderr, "Total allocs: %lu\n", g_smallmid_stats.total_allocs); fprintf(stderr, "Total frees: %lu\n", g_smallmid_stats.total_frees); fprintf(stderr, "TLS hits: %lu\n", g_smallmid_stats.tls_hits); fprintf(stderr, "TLS misses: %lu\n", g_smallmid_stats.tls_misses); fprintf(stderr, "SuperSlab refills: %lu\n", g_smallmid_stats.superslab_refills); if (g_smallmid_stats.total_allocs > 0) { double hit_rate = (double)g_smallmid_stats.tls_hits / g_smallmid_stats.total_allocs * 100.0; fprintf(stderr, "TLS hit rate: %.2f%%\n", hit_rate); } fprintf(stderr, "=======================================\n\n"); } #endif // ============================================================================ // ENV Control // ============================================================================ bool smallmid_is_enabled(void) { if (__builtin_expect(g_smallmid_enabled == -1, 0)) { const char* env = getenv("HAKMEM_SMALLMID_ENABLE"); g_smallmid_enabled = (env && atoi(env) == 1) ? 1 : 0; if (g_smallmid_enabled) { SMALLMID_LOG("Small-Mid allocator ENABLED (ENV: HAKMEM_SMALLMID_ENABLE=1)"); } else { SMALLMID_LOG("Small-Mid allocator DISABLED (default, set HAKMEM_SMALLMID_ENABLE=1 to enable)"); } } return (g_smallmid_enabled == 1); } // ============================================================================ // Initialization // ============================================================================ void smallmid_init(void) { if (g_smallmid_initialized) return; pthread_mutex_lock(&g_smallmid_init_lock); if (!g_smallmid_initialized) { SMALLMID_LOG("Initializing Small-Mid Front Box..."); // Check ENV if (!smallmid_is_enabled()) { SMALLMID_LOG("Small-Mid allocator is disabled, skipping initialization"); g_smallmid_initialized = 1; pthread_mutex_unlock(&g_smallmid_init_lock); return; } // Phase 17-1: No dedicated backend - use existing Tiny infrastructure // No additional initialization needed (TLS state is static) g_smallmid_initialized = 1; SMALLMID_LOG("Small-Mid Front Box initialized (3 classes: 256B/512B/1KB, backend=Tiny)"); } pthread_mutex_unlock(&g_smallmid_init_lock); } // ============================================================================ // TLS Freelist Operations // ============================================================================ /** * smallmid_tls_pop - Pop a block from TLS freelist * * @param class_idx Size class index * @return Block pointer (with header), or NULL if empty */ static inline void* smallmid_tls_pop(int class_idx) { void* head = g_smallmid_tls_head[class_idx]; if (!head) return NULL; // Read next pointer (stored at offset 0 in user data, after 1-byte header) void* next = *(void**)((uint8_t*)head + 1); g_smallmid_tls_head[class_idx] = next; g_smallmid_tls_count[class_idx]--; #ifdef HAKMEM_SMALLMID_STATS __atomic_fetch_add(&g_smallmid_stats.tls_hits, 1, __ATOMIC_RELAXED); #endif return head; } /** * smallmid_tls_push - Push a block to TLS freelist * * @param class_idx Size class index * @param ptr Block pointer (with header) * @return true on success, false if TLS full */ static inline bool smallmid_tls_push(int class_idx, void* ptr) { uint32_t capacity = smallmid_tls_capacity(class_idx); if (g_smallmid_tls_count[class_idx] >= capacity) { return false; // TLS full } // Write next pointer (at offset 0 in user data, after 1-byte header) void* head = g_smallmid_tls_head[class_idx]; *(void**)((uint8_t*)ptr + 1) = head; g_smallmid_tls_head[class_idx] = ptr; g_smallmid_tls_count[class_idx]++; return true; } // ============================================================================ // TLS Refill (Phase 17-2: Batch refill from dedicated SuperSlab) // ============================================================================ /** * smallmid_tls_refill - Refill TLS freelist from SuperSlab * * @param class_idx Size class index * @return true on success, false on failure * * Strategy (Phase 17-2): * - Batch refill 8-16 blocks from dedicated SmallMid SuperSlab * - No Tiny delegation (completely separate backend) * - Amortizes SuperSlab lookup cost across multiple blocks * - Expected cost: ~1-2 instructions per block (amortized) */ static bool smallmid_tls_refill(int class_idx) { // Determine batch size based on size class const int batch_sizes[SMALLMID_NUM_CLASSES] = { SMALLMID_REFILL_BATCH_256B, // 16 blocks SMALLMID_REFILL_BATCH_512B, // 12 blocks SMALLMID_REFILL_BATCH_1KB // 8 blocks }; int batch_max = batch_sizes[class_idx]; void* batch[16]; // Max batch size // Call SuperSlab batch refill int refilled = smallmid_refill_batch(class_idx, batch, batch_max); if (refilled == 0) { SMALLMID_LOG("smallmid_tls_refill: SuperSlab refill failed (class=%d)", class_idx); return false; } #ifdef HAKMEM_SMALLMID_STATS __atomic_fetch_add(&g_smallmid_stats.tls_misses, 1, __ATOMIC_RELAXED); __atomic_fetch_add(&g_smallmid_stats.superslab_refills, 1, __ATOMIC_RELAXED); #endif // Push blocks to TLS freelist (in reverse order for LIFO) for (int i = refilled - 1; i >= 0; i--) { void* user_ptr = batch[i]; void* base = (uint8_t*)user_ptr - 1; if (!smallmid_tls_push(class_idx, base)) { // TLS full - should not happen with proper batch sizing SMALLMID_LOG("smallmid_tls_refill: TLS push failed (class=%d, i=%d)", class_idx, i); break; } } SMALLMID_LOG("smallmid_tls_refill: Refilled %d blocks (class=%d)", refilled, class_idx); return true; } // ============================================================================ // Allocation // ============================================================================ void* smallmid_alloc(size_t size) { // Check if enabled if (!smallmid_is_enabled()) { return NULL; // Disabled, fall through to Mid or other allocators } // Initialize if needed if (__builtin_expect(!g_smallmid_initialized, 0)) { smallmid_init(); smallmid_superslab_init(); // Phase 17-2: Initialize SuperSlab backend } // Validate size range if (__builtin_expect(!smallmid_is_in_range(size), 0)) { SMALLMID_LOG("smallmid_alloc: size %zu out of range [%d-%d]", size, SMALLMID_MIN_SIZE, SMALLMID_MAX_SIZE); return NULL; } // Get size class int class_idx = smallmid_size_to_class(size); if (__builtin_expect(class_idx < 0, 0)) { SMALLMID_LOG("smallmid_alloc: invalid class for size %zu", size); return NULL; } #ifdef HAKMEM_SMALLMID_STATS __atomic_fetch_add(&g_smallmid_stats.total_allocs, 1, __ATOMIC_RELAXED); #endif // Fast path: Pop from TLS freelist void* ptr = smallmid_tls_pop(class_idx); if (ptr) { SMALLMID_LOG("smallmid_alloc(%zu) = %p (TLS hit, class=%d)", size, ptr, class_idx); return (uint8_t*)ptr + 1; // Return user pointer (skip header) } // TLS miss: Refill from SuperSlab (Phase 17-2: Batch refill) if (!smallmid_tls_refill(class_idx)) { SMALLMID_LOG("smallmid_alloc(%zu) = NULL (refill failed)", size); return NULL; } // Retry TLS pop after refill ptr = smallmid_tls_pop(class_idx); if (!ptr) { SMALLMID_LOG("smallmid_alloc(%zu) = NULL (TLS pop failed after refill)", size); return NULL; } SMALLMID_LOG("smallmid_alloc(%zu) = %p (TLS refill, class=%d)", size, ptr, class_idx); return (uint8_t*)ptr + 1; // Return user pointer (skip header) } // ============================================================================ // Free // ============================================================================ void smallmid_free(void* ptr) { if (!ptr) return; // Check if enabled if (!smallmid_is_enabled()) { return; // Disabled, should not be called } #ifdef HAKMEM_SMALLMID_STATS __atomic_fetch_add(&g_smallmid_stats.total_frees, 1, __ATOMIC_RELAXED); #endif // Phase 17-2: Read header to identify size class uint8_t* base = (uint8_t*)ptr - 1; uint8_t header = *base; // Small-Mid allocations have magic 0xb0 uint8_t magic = header & 0xf0; int class_idx = header & 0x0f; if (magic != 0xb0 || class_idx < 0 || class_idx >= SMALLMID_NUM_CLASSES) { // Invalid header - should not happen SMALLMID_LOG("smallmid_free(%p): Invalid header 0x%02x", ptr, header); return; } // Fast path: Push to TLS freelist if (smallmid_tls_push(class_idx, base)) { SMALLMID_LOG("smallmid_free(%p): pushed to TLS (class=%d)", ptr, class_idx); return; } // TLS full: Push to SuperSlab freelist (slow path) // TODO Phase 17-2.1: Implement SuperSlab freelist push // For now, just log and leak (will be fixed in next commit) SMALLMID_LOG("smallmid_free(%p): TLS full, SuperSlab freelist not yet implemented", ptr); // Placeholder: Write next pointer to freelist (unsafe without SuperSlab lookup) // This will be properly implemented with smallmid_superslab_lookup() in Phase 17-2.1 } // ============================================================================ // Thread Cleanup // ============================================================================ void smallmid_thread_exit(void) { if (!smallmid_is_enabled()) return; SMALLMID_LOG("smallmid_thread_exit: cleaning up TLS state"); // Phase 17-1: Return TLS blocks to Tiny backend for (int i = 0; i < SMALLMID_NUM_CLASSES; i++) { void* head = g_smallmid_tls_head[i]; while (head) { void* next = *(void**)((uint8_t*)head + 1); void* user_ptr = (uint8_t*)head + 1; smallmid_backend_free(user_ptr, 0); head = next; } g_smallmid_tls_head[i] = NULL; g_smallmid_tls_count[i] = 0; } }