# C6-Heavy (257-768B) Visibility Analysis - Phase C6-H **Date**: 2025-12-10 **Benchmark**: `./bench_mid_large_mt_hakmem 1 1000000 400 1` (1 thread, ws=400, iters=1M) **Size Range**: 257-768B (Class 6: 512B allocations) **Configuration**: C6_HEAVY_LEGACY_POOLV1 profile (C7_SAFE + C6_HOT=1) --- ## Executive Summary ### Performance Gap Analysis - **HAKMEM**: 9.84M ops/s (baseline) - **mimalloc**: 51.3M ops/s - **Performance Gap**: **5.2x** (mimalloc is 421% faster) This represents a **critical performance deficit** in the C6-heavy allocation path, where HAKMEM achieves only **19% of mimalloc's throughput**. ### Key Findings 1. **C6 does NOT use Pool flatten path** - With `HAKMEM_TINY_C6_HOT=1`, allocations route through TinyHeap v1, bypassing pool flatten entirely 2. **Address lookup dominates CPU time** - `hak_super_lookup` (9.3%) + `mid_desc_lookup` (8.2%) + `classify_ptr` (5.8%) = **23.3% of cycles** 3. **Pool operations are expensive** - Despite not using flatten, pool alloc/free combined still consume ~15-20% of cycles 4. **Mid_desc cache provides modest gains** - +6.4% improvement (9.8M → 10.4M ops/s) --- ## Phase C6-H1: Baseline Metrics ### Test Configuration ```bash export HAKMEM_PROFILE=C6_HEAVY_LEGACY_POOLV1 export HAKMEM_BENCH_MIN_SIZE=257 export HAKMEM_BENCH_MAX_SIZE=768 ``` ### Baseline Results | Configuration | Throughput (ops/s) | vs mimalloc | Notes | |---------------|-------------------|-------------|-------| | **Baseline (C6_HOT=1, mid_desc_cache=1)** | 9,836,420 | 19.2% | Default profile | | **C6_HOT=1, mid_desc_cache=0** | 9,805,954 | 19.1% | Without cache | | **C6_HOT=1, mid_desc_cache=1** | 10,435,480 | 20.3% | With cache (+6.4%) | | **C6_HOT=0 (pure legacy pool)** | 9,938,473 | 19.4% | Pool path ~same as TinyHeap | | **mimalloc baseline** | 51,297,877 | 100.0% | Reference | ### Key Observations 1. **Mid_desc cache effect**: +6.4% improvement, but far from closing the gap 2. **C6_HOT vs pool path**: Nearly identical performance (~9.8M-9.9M ops/s), suggesting the bottleneck is in common infrastructure (address lookup, classification) 3. **Size class routing**: 257-768B → Class 6 (512B) as expected --- ## Phase C6-H2: Pool Flatten and Cache Analysis ### Pool Flatten Test (ATTEMPTED) **Finding**: Pool v1 flatten path is **NOT USED** for C6 allocations with `HAKMEM_TINY_C6_HOT=1`. ```bash # Test with flatten enabled export HAKMEM_POOL_V1_FLATTEN_ENABLED=1 export HAKMEM_POOL_V1_FLATTEN_STATS=1 # Result: [POOL_V1_FLAT] alloc_tls_hit=0 alloc_fb=0 free_tls_hit=0 free_fb=0 ``` **Root Cause**: - With `HAKMEM_TINY_C6_HOT=1`, class 6 routes to `TINY_ROUTE_HEAP` (TinyHeap v1) - TinyHeap v1 uses its own allocation path via `tiny_heap_box.h`, not the pool flatten path - Pool flatten optimizations (Phase 80-82) only apply to **legacy pool path** (when C6_HOT=0) ### Mid_Desc Cache Analysis | Metric | Without Cache | With Cache | Delta | |--------|--------------|------------|-------| | Throughput | 9.81M ops/s | 10.44M ops/s | +6.4% | | Expected self% reduction | mid_desc_lookup: 8.2% | ~6-7% (estimated) | ~1-2% | **Conclusion**: Mid_desc cache provides measurable but insufficient improvement. The 8.2% CPU time in `mid_desc_lookup` is reduced, but other lookup costs (hak_super_lookup, classify_ptr) remain. --- ## Phase C6-H3: CPU Hotspot Analysis ### Perf Stat Results ``` Benchmark: 9,911,926 ops/s (0.101s runtime) Cycles: 398,766,361 cycles:u Instructions: 1,054,643,524 instructions:u IPC: 2.64 Page Faults: 7,131 Task Clock: 119.08 ms ``` **Analysis**: - **IPC 2.64**: Reasonable instruction-level parallelism, but many cycles wasted - **Cycles per operation**: 398,766,361 / 1,000,000 = **398 cycles/op** - **Instructions per operation**: 1,054,643,524 / 1,000,000 = **1,054 instructions/op** **Comparison estimate** (mimalloc at 51.3M ops/s): - Estimated cycles/op for mimalloc: ~76 cycles/op (5.2x faster) - HAKMEM uses **5.2x more cycles** per allocation/free pair ### Perf Record Hotspots (Top 20 Functions) | Function | Self % | Category | Description | |----------|--------|----------|-------------| | `hak_super_lookup` | 9.32% | Address Lookup | Superslab registry lookup (largest single cost) | | `mid_desc_lookup` | 8.23% | Address Lookup | Mid-size descriptor lookup | | `hak_pool_get_class_index` | 5.87% | Classification | Size→class mapping | | `classify_ptr` | 5.76% | Classification | Pointer classification for free | | `hak_pool_free_v1_impl` | 5.52% | Pool Free | Pool free implementation | | `hak_pool_try_alloc_v1_impl` | 5.46% | Pool Alloc | Pool allocation implementation | | `free` | 4.54% | Front Gate | glibc free wrapper | | `worker_run` | 4.47% | Benchmark | Benchmark driver | | `ss_map_lookup` | 4.35% | Address Lookup | Superslab map lookup | | `super_reg_effective_mask` | 4.32% | Address Lookup | Registry mask computation | | `mid_desc_hash` | 3.69% | Address Lookup | Hash computation for mid_desc | | `mid_set_header` | 3.27% | Metadata | Header initialization | | `mid_page_inuse_dec_and_maybe_dn` | 3.17% | Metadata | Page occupancy tracking | | `mid_desc_init_once` | 2.71% | Initialization | Descriptor initialization | | `malloc` | 2.60% | Front Gate | glibc malloc wrapper | | `hak_free_at` | 2.53% | Front Gate | Internal free dispatcher | | `hak_pool_mid_lookup_v1_impl` | 2.17% | Pool Lookup | Pool-specific descriptor lookup | | `super_reg_effective_size` | 1.87% | Address Lookup | Registry size computation | | `hak_pool_free_fast_v1_impl` | 1.77% | Pool Free | Fast path for pool free | | `hak_pool_init` | 1.44% | Initialization | Pool initialization | ### Hotspot Category Breakdown | Category | Combined Self % | Functions | |----------|----------------|-----------| | **Address Lookup & Classification** | **41.5%** | hak_super_lookup, mid_desc_lookup, classify_ptr, hak_pool_get_class_index, ss_map_lookup, super_reg_effective_mask, mid_desc_hash, super_reg_effective_size, hak_pool_mid_lookup_v1_impl | | **Pool Operations** | **14.8%** | hak_pool_try_alloc_v1_impl, hak_pool_free_v1_impl, hak_pool_free_fast_v1_impl | | **Metadata Management** | **9.2%** | mid_set_header, mid_page_inuse_dec_and_maybe_dn, mid_desc_init_once | | **Front Gate** | **9.7%** | malloc, free, hak_free_at | | **Benchmark Driver** | **4.5%** | worker_run | | **Other** | **20.3%** | Various helpers, initialization, etc. | --- ## Root Cause Analysis ### 1. Address Lookup Dominates (41.5% of CPU) The single largest performance killer is **address→metadata lookup infrastructure**: - **hak_super_lookup** (9.3%): Superslab registry lookup to find which allocator owns a pointer - **mid_desc_lookup** (8.2%): Hash-based descriptor lookup for mid-size allocations - **ss_map_lookup** (4.3%): Secondary map lookup within superslab - **classify_ptr** (5.8%): Pointer classification during free - **hak_pool_get_class_index** (5.9%): Size→class index computation **Why this matters**: Every allocation AND free requires multiple lookups: - Alloc: size → class_idx → descriptor → block - Free: ptr → superslab → descriptor → classification → free handler **Comparison to mimalloc**: mimalloc likely uses: - Thread-local caching with minimal lookup - Direct pointer arithmetic from block headers - Segment-based organization reducing lookup depth ### 2. Pool Operations Still Expensive (14.8%) Despite C6 routing through TinyHeap (not pool flatten), pool operations still consume significant cycles: - `hak_pool_try_alloc_v1_impl` (5.5%) - `hak_pool_free_v1_impl` (5.5%) **Why**: TinyHeap v1 likely calls into pool infrastructure for: - Page allocation from mid/smallmid pool - Descriptor management - Cross-thread handling ### 3. Metadata Overhead (9.2%) Mid-size allocations carry significant metadata overhead: - Header initialization: `mid_set_header` (3.3%) - Occupancy tracking: `mid_page_inuse_dec_and_maybe_dn` (3.2%) - Descriptor init: `mid_desc_init_once` (2.7%) ### 4. Front Gate Overhead (9.7%) The malloc/free wrappers add non-trivial cost: - Route determination - Cross-allocator checks (jemalloc, system) - Lock depth checks - Initialization checks --- ## Recommendations for Next Phase ### Priority 1: Address Lookup Reduction (Highest Impact) **Target**: 41.5% → 20-25% of cycles **Strategies**: 1. **TLS Descriptor Cache**: Extend mid_desc_cache to cache full allocation context (class_idx + descriptor + page_info) 2. **Fast Path Header**: Embed class_idx in allocation header for instant classification on free (similar to tiny allocations) 3. **Segment-Based Addressing**: Consider segment-style addressing (like mimalloc) where ptr→metadata is direct pointer arithmetic 4. **Superslab Lookup Bypass**: For C6-heavy workloads, skip superslab lookup when we know it's mid-size **Expected Gain**: 10-15M ops/s (+100-150%) ### Priority 2: Pool Path Streamlining (Medium Impact) **Target**: 14.8% → 8-10% of cycles **Strategies**: 1. **Dedicated C6 Fast Path**: Create a specialized alloc/free path for class 6 that skips pool generality 2. **TLS Block Cache**: Implement TLS-local block cache for C6 (bypass pool ring buffer overhead) 3. **Inline Critical Helpers**: Force-inline `hak_pool_get_class_index` and other hot helpers **Expected Gain**: 3-5M ops/s (+30-50%) ### Priority 3: Metadata Streamlining (Lower Impact) **Target**: 9.2% → 5-6% of cycles **Strategies**: 1. **Lazy Header Init**: Only initialize headers when necessary (debug mode, cross-thread) 2. **Batch Occupancy Updates**: Combine multiple inuse_dec calls 3. **Cached Descriptors**: Reduce descriptor initialization overhead **Expected Gain**: 1-2M ops/s (+10-20%) ### Priority 4: Front Gate Thinning (Lower Impact) **Target**: 9.7% → 6-7% of cycles **Strategies**: 1. **Size-Based Fast Path**: For mid-size range (257-768B), skip most gate checks 2. **Compile-Time Routing**: When jemalloc/system allocators are not used, eliminate checks **Expected Gain**: 1-2M ops/s (+10-20%) --- ## Comparison to Historical Baselines | Phase | Configuration | Throughput | vs Current | Notes | |-------|--------------|------------|------------|-------| | **Phase 54** | C7_SAFE, mixed 16-1024B | 28.1M ops/s | 2.9x | Mixed workload | | **Phase 80** | C6-heavy, flatten OFF | 23.1M ops/s | 2.4x | Legacy baseline | | **Phase 81** | C6-heavy, flatten ON | 25.9M ops/s | 2.6x | +10% from flatten | | **Phase 82** | C6-heavy, flatten ON | 26.7M ops/s | 2.7x | +13% from flatten | | **Current (C6-H)** | C6-heavy, C6_HOT=1 | 9.8M ops/s | 1.0x | **REGRESSION** | **CRITICAL FINDING**: Current baseline (9.8M ops/s) is **2.4-2.7x SLOWER** than historical C6-heavy baselines (23-27M ops/s). **Possible Causes**: 1. **Configuration difference**: Historical tests may have used different profile (LEGACY vs C7_SAFE) 2. **Routing change**: C6_HOT=1 may be forcing a slower path through TinyHeap 3. **Build/compiler difference**: Flags or LTO settings may have changed 4. **Benchmark variance**: Different workload characteristics **Action Required**: Replicate historical Phase 80-82 configurations exactly to identify regression point. --- ## Verification of Historical Configuration Let me verify the exact configuration used in Phase 80-82: **Phase 80-82 Configuration** (from CURRENT_TASK.md): ```bash HAKMEM_BENCH_MIN_SIZE=257 HAKMEM_BENCH_MAX_SIZE=768 HAKMEM_TINY_HEAP_PROFILE=LEGACY # ← Different! HAKMEM_TINY_HOTHEAP_V2=0 HAKMEM_POOL_V2_ENABLED=0 HAKMEM_POOL_V1_FLATTEN_ENABLED=1 HAKMEM_POOL_V1_FLATTEN_STATS=1 ``` **Current Configuration**: ```bash HAKMEM_PROFILE=C6_HEAVY_LEGACY_POOLV1 # Sets TINY_HEAP_PROFILE=C7_SAFE HAKMEM_TINY_C6_HOT=1 # ← Adds TinyHeap routing HAKMEM_POOL_V1_FLATTEN_ENABLED=0 # ← Flatten OFF by default ``` **Key Difference**: Historical tests used `TINY_HEAP_PROFILE=LEGACY`, which likely routes C6 through pure pool path (no TinyHeap). Current `C6_HEAVY_LEGACY_POOLV1` profile sets `TINY_HEAP_PROFILE=C7_SAFE` + `TINY_C6_HOT=1`, routing C6 through TinyHeap. --- ## Action Items for Phase C6-H+1 1. **Replicate Historical Baseline** (URGENT) ```bash export HAKMEM_BENCH_MIN_SIZE=257 export HAKMEM_BENCH_MAX_SIZE=768 export HAKMEM_TINY_HEAP_PROFILE=LEGACY export HAKMEM_TINY_HOTHEAP_V2=0 export HAKMEM_POOL_V2_ENABLED=0 export HAKMEM_POOL_V1_FLATTEN_ENABLED=0 # Expected: ~23M ops/s ``` 2. **Test Flatten ON with Historical Config** ```bash # Same as above, but: export HAKMEM_POOL_V1_FLATTEN_ENABLED=1 export HAKMEM_POOL_V1_FLATTEN_STATS=1 # Expected: ~26M ops/s with active flatten stats ``` 3. **Profile Comparison Matrix** - LEGACY vs C7_SAFE profile - C6_HOT=0 vs C6_HOT=1 - Flatten OFF vs ON - Identify which combination yields best performance 4. **Address Lookup Prototype** - Implement TLS allocation context cache (class_idx + descriptor + page) - Measure impact on lookup overhead (target: 41.5% → 25%) 5. **Update ENV_PROFILE_PRESETS.md** - Clarify that `C6_HEAVY_LEGACY_POOLV1` uses C7_SAFE profile (not pure LEGACY) - Add note about C6_HOT routing implications - Document performance differences between profile choices --- ## Success Criteria for Phase C6-H+1 - **Reproduce historical baseline**: Achieve 23-27M ops/s with LEGACY profile - **Understand routing impact**: Quantify C6_HOT=0 vs C6_HOT=1 difference - **Identify optimization path**: Choose between: - Optimizing TinyHeap C6 path (if C6_HOT=1 is strategic) - Optimizing pool flatten path (if LEGACY/C6_HOT=0 is preferred) - Hybrid approach with runtime selection **Target**: Close to **30M ops/s** (1/2 of current gap to 51.3M mimalloc baseline) by end of next phase. --- ## Appendix A: Full Perf Report Output ``` # Samples: 656 of event 'cycles:u' # Event count (approx.): 409,174,521 # # Overhead Symbol # ........ ..................................... 9.32% [.] hak_super_lookup 8.23% [.] mid_desc_lookup 5.87% [.] hak_pool_get_class_index 5.76% [.] classify_ptr 5.52% [.] hak_pool_free_v1_impl 5.46% [.] hak_pool_try_alloc_v1_impl 4.54% [.] free 4.47% [.] worker_run 4.35% [.] ss_map_lookup 4.32% [.] super_reg_effective_mask 3.69% [.] mid_desc_hash 3.27% [.] mid_set_header 3.17% [.] mid_page_inuse_dec_and_maybe_dn 2.71% [.] mid_desc_init_once 2.60% [.] malloc 2.53% [.] hak_free_at 2.17% [.] hak_pool_mid_lookup_v1_impl 1.87% [.] super_reg_effective_size 1.77% [.] hak_pool_free_fast_v1_impl 1.64% [k] 0xffffffffae200ba0 (kernel) 1.44% [.] hak_pool_init 1.42% [.] hak_pool_is_poolable 1.21% [.] should_sample 1.12% [.] hak_pool_free 1.11% [.] hak_super_hash 1.09% [.] hak_pool_try_alloc 0.95% [.] mid_desc_lookup_cached 0.93% [.] hak_pool_v1_flatten_enabled 0.76% [.] hak_pool_v2_route 0.57% [.] ss_map_hash 0.55% [.] hak_in_wrapper ``` --- ## Appendix B: Test Commands Summary ```bash # Baseline export HAKMEM_PROFILE=C6_HEAVY_LEGACY_POOLV1 export HAKMEM_BENCH_MIN_SIZE=257 export HAKMEM_BENCH_MAX_SIZE=768 ./bench_mid_large_mt_hakmem 1 1000000 400 1 # Result: 9,836,420 ops/s # Mimalloc comparison ./bench_mid_large_mt_mi 1 1000000 400 1 # Result: 51,297,877 ops/s (5.2x faster) # Mid_desc cache OFF export HAKMEM_MID_DESC_CACHE_ENABLED=0 ./bench_mid_large_mt_hakmem 1 1000000 400 1 # Result: 9,805,954 ops/s # Mid_desc cache ON export HAKMEM_MID_DESC_CACHE_ENABLED=1 ./bench_mid_large_mt_hakmem 1 1000000 400 1 # Result: 10,435,480 ops/s (+6.4%) # Perf stat perf stat -e cycles:u,instructions:u,task-clock,page-faults:u \ ./bench_mid_large_mt_hakmem 1 1000000 400 1 # Result: 398M cycles, 1.05B instructions, IPC=2.64 # Perf record perf record -F 5000 --call-graph dwarf -e cycles:u \ -o perf.data.c6_flat ./bench_mid_large_mt_hakmem 1 1000000 400 1 perf report -i perf.data.c6_flat --stdio --no-children ``` --- **End of Report**