// pool_alloc_v2_box.h — Box: Pool V2 Alloc Implementation // // Purpose: Pool v2 alloc path with hotbox_v2 integration // Pattern: Enhanced alloc path with hotbox, MF2, TC drain, and TLS support // Phase: Pool API Modularization - Step 7 (LARGEST COMPLEXITY - 277 lines) // Dependencies: Assumes pool_api.inc.h includes this after pool_block_to_user_box.h // (provides AllocHeader, PoolBlock, PoolTLSRing, g_pool, etc.) #ifndef POOL_ALLOC_V2_BOX_H #define POOL_ALLOC_V2_BOX_H #include "pool_block_to_user_box.h" // Pool block to user helpers #include "pool_config_box.h" // For configuration gates #include "pool_stats_box.h" // For statistics #include "pool_mid_desc_cache_box.h" // For mid_desc_lookup_cached #include "pool_hotbox_v2_box.h" // For hotbox v2 functions #include "tiny_heap_env_box.h" // TinyHeap profile #include #include // External functions (large set due to complexity) extern void hak_pool_init(void); extern int hak_pool_is_poolable(size_t size); extern int hak_pool_get_class_index(size_t size); extern int hak_pool_get_shard_index(uintptr_t site_id); extern void set_nonempty_bit(int class_idx, int shard); extern void clear_nonempty_bit(int class_idx, int shard); extern void mid_desc_adopt(void* block, int class_idx, uint64_t owner_tid); extern void* mf2_alloc_fast(int class_idx, size_t size, uintptr_t site_id); extern int choose_nonempty_shard(int class_idx, int shard_idx); extern void drain_remote_locked(int class_idx, int shard_idx); extern int is_shard_nonempty(int class_idx, int shard_idx); extern int refill_freelist(int class_idx, int shard_idx); // Note: The following functions/macros/types are assumed to be available from the // caller's compilation unit (hakmem_pool.c): // - PoolTLSPage, PoolTLSBin, FrozenPolicy (types from pool_tls_types.inc.h) // - mid_tc_has_items, mid_tc_drain_into_tls (from pool_mid_tc.inc.h) // - refill_tls_from_active_page, alloc_tls_page (from pool_tls_core.inc.h) // - hkm_policy_get (from hakmem_policy.h) // - hkm_prof_begin, hkm_prof_end (macros from hakmem_prof.h) // Assumed available from caller includes: // - AllocHeader, PoolBlock, PoolTLSRing, PoolTLSPage (from hakmem_internal.h / pool_tls_types.inc.h) // - g_pool, g_tls_bin, g_class_sizes, t_pool_rng, g_count_sample_exp (from hakmem_pool.c) // - g_tls_ring_enabled, g_tls_active_page_a/b/c, g_tc_enabled, g_tc_drain_trigger // - g_mf2_enabled, g_wrap_l2_enabled, g_trylock_probes // - HEADER_SIZE, POOL_L2_RING_CAP, POOL_NUM_SHARDS, POOL_MIN_SIZE, POOL_MAX_SIZE // - HKM_TIME_START, HKM_TIME_END, HKM_CAT_*, HKP_* macros // ============================================================================ // Pool V2 Alloc Implementation (with hotbox_v2, MF2, TC drain, TLS support) // ============================================================================ static inline void* hak_pool_try_alloc_v2_impl(size_t size, uintptr_t site_id) { // Debug: IMMEDIATE output to verify function is called static int first_call = 1; if (__builtin_expect(first_call, 0)) { HAKMEM_LOG("[Pool] hak_pool_try_alloc FIRST CALL EVER!\n"); first_call = 0; } if (__builtin_expect(size == 40960, 0)) { HAKMEM_LOG("[Pool] hak_pool_try_alloc called with 40KB (Bridge class 5)\n"); } hak_pool_init(); // pthread_once() ensures thread-safe init (no data race!) // Debug for 33-41KB allocations if (__builtin_expect(size >= 33000 && size <= 41000, 0)) { HAKMEM_LOG("[Pool] hak_pool_try_alloc: size=%zu (after init)\n", size); } // P1.7 guard: allow pool by default even when called from wrappers. // Only block if explicitly disabled via env or during nested recursion. extern int hak_in_wrapper(void); extern __thread int g_hakmem_lock_depth; int in_wrapper = hak_in_wrapper(); if (in_wrapper && g_hakmem_lock_depth > 1) { if (__builtin_expect(size >= 33000 && size <= 41000, 0)) { HAKMEM_LOG("[Pool] REJECTED: nested wrapper depth=%d\n", g_hakmem_lock_depth); } return NULL; } if (in_wrapper && !g_wrap_l2_enabled) { if (__builtin_expect(size >= 33000 && size <= 41000, 0)) { HAKMEM_LOG("[Pool] REJECTED: in_wrapper=%d, wrap_l2=%d\n", in_wrapper, g_wrap_l2_enabled); } return NULL; } if (!hak_pool_is_poolable(size)) { if (__builtin_expect(size >= 33000 && size <= 41000, 0)) { HAKMEM_LOG("[Pool] REJECTED: not poolable (min=%d, max=%d)\n", POOL_MIN_SIZE, POOL_MAX_SIZE); } return NULL; } // Get class and shard indices int class_idx = hak_pool_get_class_index(size); if (class_idx < 0) { if (__builtin_expect(size >= 33000 && size <= 41000, 0)) { HAKMEM_LOG("[Pool] REJECTED: class_idx=%d (size=%zu not mapped)\n", class_idx, size); } return NULL; } // Experimental PoolHotBox v2 (Hot path) — currently structure only. if (__builtin_expect(pool_hotbox_v2_class_enabled(class_idx), 0)) { void* p = pool_hotbox_v2_alloc((uint32_t)class_idx, size, site_id); if (p) return p; pool_hotbox_v2_record_alloc_fallback((uint32_t)class_idx); } if (__builtin_expect(size >= 33000 && size <= 41000, 0)) { HAKMEM_LOG("[Pool] ACCEPTED: class_idx=%d, proceeding with allocation\n", class_idx); } // MF2: Per-Page Sharding path if (g_mf2_enabled) { return mf2_alloc_fast(class_idx, size, site_id); } // OLD PATH: TLS fast path (ring then local LIFO); drain TC only when needed PoolTLSRing* ring = &g_tls_bin[class_idx].ring; if (g_tc_enabled && ring->top < g_tc_drain_trigger && mid_tc_has_items(class_idx)) { HKM_TIME_START(t_tc_drain); if (mid_tc_drain_into_tls(class_idx, ring, &g_tls_bin[class_idx])) { HKM_TIME_END(HKM_CAT_TC_DRAIN, t_tc_drain); if (ring->top > 0) { HKM_TIME_START(t_ring_pop0); PoolBlock* tlsb = ring->items[--ring->top]; HKM_TIME_END(HKM_CAT_POOL_TLS_RING_POP, t_ring_pop0); return hak_pool_block_to_user(tlsb, class_idx, site_id); } } else { HKM_TIME_END(HKM_CAT_TC_DRAIN, t_tc_drain); } } if (g_tls_ring_enabled) { if (ring->top == 0) { atomic_fetch_add_explicit(&g_pool.ring_underflow, 1, memory_order_relaxed); } if (ring->top > 0) { HKM_TIME_START(t_ring_pop1); PoolBlock* tlsb = ring->items[--ring->top]; HKM_TIME_END(HKM_CAT_POOL_TLS_RING_POP, t_ring_pop1); return hak_pool_block_to_user(tlsb, class_idx, site_id); } } if (g_tls_bin[class_idx].lo_head) { HKM_TIME_START(t_lifo_pop0); PoolBlock* b = g_tls_bin[class_idx].lo_head; g_tls_bin[class_idx].lo_head = b->next; if (g_tls_bin[class_idx].lo_count) g_tls_bin[class_idx].lo_count--; HKM_TIME_END(HKM_CAT_POOL_TLS_LIFO_POP, t_lifo_pop0); return hak_pool_block_to_user(b, class_idx, site_id); } // Compute shard only when we need to access shared structures int shard_idx = hak_pool_get_shard_index(site_id); // Try to batch-pop from a non-empty shard using trylock to fill TLS ring if (g_tls_ring_enabled) { int s0 = choose_nonempty_shard(class_idx, shard_idx); for (int probe = 0; probe < g_trylock_probes; ++probe) { int s = (s0 + probe) & (POOL_NUM_SHARDS - 1); pthread_mutex_t* l = &g_pool.freelist_locks[class_idx][s].m; atomic_fetch_add_explicit(&g_pool.trylock_attempts, 1, memory_order_relaxed); if (pthread_mutex_trylock(l) == 0) { atomic_fetch_add_explicit(&g_pool.trylock_success, 1, memory_order_relaxed); // First, drain any remote frees into freelist if (atomic_load_explicit(&g_pool.remote_count[class_idx][s], memory_order_relaxed) != 0) { drain_remote_locked(class_idx, s); } PoolBlock* head = g_pool.freelist[class_idx][s]; int to_ring = POOL_L2_RING_CAP - ring->top; if (to_ring < 0) to_ring = 0; while (head && to_ring-- > 0) { PoolBlock* nxt = head->next; ring->items[ring->top++] = head; head = nxt; } while (head) { PoolBlock* nxt = head->next; head->next = g_tls_bin[class_idx].lo_head; g_tls_bin[class_idx].lo_head = head; g_tls_bin[class_idx].lo_count++; head = nxt; } g_pool.freelist[class_idx][s] = head; if (!head) clear_nonempty_bit(class_idx, s); pthread_mutex_unlock(l); if (ring->top > 0) { PoolBlock* tlsb = ring->items[--ring->top]; return hak_pool_block_to_user(tlsb, class_idx, site_id); } } } } // Try TLS active pages (owner-only local bump-run, up to 3) PoolTLSPage* ap = NULL; if (g_tls_active_page_a[class_idx].page && g_tls_active_page_a[class_idx].count > 0 && g_tls_active_page_a[class_idx].bump < g_tls_active_page_a[class_idx].end) ap = &g_tls_active_page_a[class_idx]; else if (g_tls_active_page_b[class_idx].page && g_tls_active_page_b[class_idx].count > 0 && g_tls_active_page_b[class_idx].bump < g_tls_active_page_b[class_idx].end) ap = &g_tls_active_page_b[class_idx]; else if (g_tls_active_page_c[class_idx].page && g_tls_active_page_c[class_idx].count > 0 && g_tls_active_page_c[class_idx].bump < g_tls_active_page_c[class_idx].end) ap = &g_tls_active_page_c[class_idx]; if (ap) { if (g_tls_ring_enabled && ring->top < POOL_L2_RING_CAP) { int need = POOL_L2_RING_CAP - ring->top; (void)refill_tls_from_active_page(class_idx, ring, &g_tls_bin[class_idx], ap, need); } PoolBlock* b = NULL; if (ring->top > 0) { b = ring->items[--ring->top]; } else if (ap->page && ap->count > 0 && ap->bump < ap->end) { b = (PoolBlock*)(void*)ap->bump; ap->bump += (HEADER_SIZE + g_class_sizes[class_idx]); ap->count--; if (ap->bump >= ap->end || ap->count<=0){ ap->page=NULL; ap->count=0; } } if (b) { g_pool.hits[class_idx]++; return hak_pool_block_to_user(b, class_idx, site_id); } } // Lock the shard freelist for this (class, shard) pthread_mutex_t* lock = &g_pool.freelist_locks[class_idx][shard_idx].m; HKM_TIME_START(t_lock); struct timespec ts_lk1; int lk1 = hkm_prof_begin(&ts_lk1); (void)ts_lk1; (void)lk1; // Unused profiling variables pthread_mutex_lock(lock); HKM_TIME_END(HKM_CAT_POOL_LOCK, t_lock); hkm_prof_end(lk1, HKP_POOL_LOCK, &ts_lk1); // Try to pop from freelist PoolBlock* block = g_pool.freelist[class_idx][shard_idx]; if (!block) { // Before refilling, try draining remote stack and simple shard steal int stole = 0; const FrozenPolicy* pol = hkm_policy_get(); if (pol) { uint16_t cap = 0; if (class_idx < 5) cap = pol->mid_cap[class_idx]; else if (class_idx == 5 && pol->mid_dyn1_bytes != 0) cap = pol->mid_cap_dyn1; else if (class_idx == 6 && pol->mid_dyn2_bytes != 0) cap = pol->mid_cap_dyn2; // Drain remotes if (atomic_load_explicit(&g_pool.remote_count[class_idx][shard_idx], memory_order_relaxed) != 0) { drain_remote_locked(class_idx, shard_idx); block = g_pool.freelist[class_idx][shard_idx]; } // Light shard steal when over cap if (!block && cap > 0 && g_pool.pages_by_class[class_idx] >= cap) { HKM_TIME_START(t_steal); for (int d = 1; d <= 4 && !stole; d++) { int s1 = (shard_idx + d) & (POOL_NUM_SHARDS - 1); int s2 = (shard_idx - d) & (POOL_NUM_SHARDS - 1); if (is_shard_nonempty(class_idx, s1)) { pthread_mutex_t* l2 = &g_pool.freelist_locks[class_idx][s1].m; pthread_mutex_lock(l2); PoolBlock* b2 = g_pool.freelist[class_idx][s1]; if (b2) { g_pool.freelist[class_idx][s1] = b2->next; if (!g_pool.freelist[class_idx][s1]) clear_nonempty_bit(class_idx, s1); block = b2; stole = 1; } pthread_mutex_unlock(l2); } if (!stole && is_shard_nonempty(class_idx, s2)) { pthread_mutex_t* l3 = &g_pool.freelist_locks[class_idx][s2].m; pthread_mutex_lock(l3); PoolBlock* b3 = g_pool.freelist[class_idx][s2]; if (b3) { g_pool.freelist[class_idx][s2] = b3->next; if (!g_pool.freelist[class_idx][s2]) clear_nonempty_bit(class_idx, s2); block = b3; stole = 1; } pthread_mutex_unlock(l3); } } HKM_TIME_END(HKM_CAT_SHARD_STEAL, t_steal); } } if (!stole && !block) { // Freelist empty, refill page PoolTLSPage* tap = NULL; if (g_tls_active_page_a[class_idx].page == NULL || g_tls_active_page_a[class_idx].count == 0) tap = &g_tls_active_page_a[class_idx]; else if (g_tls_active_page_b[class_idx].page == NULL || g_tls_active_page_b[class_idx].count == 0) tap = &g_tls_active_page_b[class_idx]; else if (g_tls_active_page_c[class_idx].page == NULL || g_tls_active_page_c[class_idx].count == 0) tap = &g_tls_active_page_c[class_idx]; else tap = &g_tls_active_page_a[class_idx]; HKM_TIME_START(t_alloc_page); if (alloc_tls_page(class_idx, tap)) { HKM_TIME_END(HKM_CAT_POOL_ALLOC_TLS_PAGE, t_alloc_page); pthread_mutex_unlock(lock); // Top-up ring and return ap = tap; if (g_tls_ring_enabled && ring->top < POOL_L2_RING_CAP) { int need = POOL_L2_RING_CAP - ring->top; (void)refill_tls_from_active_page(class_idx, ring, &g_tls_bin[class_idx], ap, need); } PoolBlock* takeb = NULL; if (ring->top > 0) { HKM_TIME_START(t_ring_pop2); takeb = ring->items[--ring->top]; HKM_TIME_END(HKM_CAT_POOL_TLS_RING_POP, t_ring_pop2); } else if (ap->page && ap->count > 0 && ap->bump < ap->end) { takeb = (PoolBlock*)(void*)ap->bump; ap->bump += (HEADER_SIZE + g_class_sizes[class_idx]); ap->count--; if (ap->bump >= ap->end || ap->count == 0) { ap->page = NULL; ap->count = 0; } } return hak_pool_block_to_user(takeb, class_idx, site_id); } HKM_TIME_START(t_refill); struct timespec ts_rf; int rf = hkm_prof_begin(&ts_rf); (void)ts_rf; (void)rf; int ok = refill_freelist(class_idx, shard_idx); HKM_TIME_END(HKM_CAT_POOL_REFILL, t_refill); hkm_prof_end(rf, HKP_POOL_REFILL, &ts_rf); if (!ok) { t_pool_rng ^= t_pool_rng << 13; t_pool_rng ^= t_pool_rng >> 17; t_pool_rng ^= t_pool_rng << 5; if ((t_pool_rng & ((1u<next; mid_desc_adopt(block, class_idx, (uint64_t)(uintptr_t)pthread_self()); if (g_pool.freelist[class_idx][shard_idx] == NULL) clear_nonempty_bit(class_idx, shard_idx); pthread_mutex_unlock(lock); // Store to TLS then pop PoolBlock* take; if (g_tls_ring_enabled && ring->top < POOL_L2_RING_CAP) { ring->items[ring->top++] = block; take = ring->items[--ring->top]; } else { block->next = g_tls_bin[class_idx].lo_head; g_tls_bin[class_idx].lo_head = block; g_tls_bin[class_idx].lo_count++; if (g_tls_ring_enabled && ring->top > 0) { take = ring->items[--ring->top]; } else { take = g_tls_bin[class_idx].lo_head; g_tls_bin[class_idx].lo_head = take->next; if (g_tls_bin[class_idx].lo_count) g_tls_bin[class_idx].lo_count--; } } return hak_pool_block_to_user(take, class_idx, site_id); } #endif // POOL_ALLOC_V2_BOX_H