// ss_stats_box.c - SuperSlab Statistics Box Implementation #include "ss_stats_box.h" #include #include "../superslab/superslab_inline.h" #include #include #include // ============================================================================ // Global Statistics State // ============================================================================ static pthread_mutex_t g_superslab_lock = PTHREAD_MUTEX_INITIALIZER; uint64_t g_superslabs_allocated = 0; // Non-static for debugging uint64_t g_superslabs_freed = 0; // Non-static for test access uint64_t g_bytes_allocated = 0; // Non-static for debugging // Per-class counters (Tiny classes = 8) uint64_t g_ss_alloc_by_class[8] = {0}; uint64_t g_ss_freed_by_class[8] = {0}; // Cache statistics uint64_t g_superslabs_reused = 0; uint64_t g_superslabs_cached = 0; // Debug counters (free path instrumentation) _Atomic uint64_t g_ss_active_dec_calls = 0; _Atomic uint64_t g_hak_tiny_free_calls = 0; _Atomic uint64_t g_ss_remote_push_calls = 0; _Atomic uint64_t g_free_ss_enter = 0; // hak_tiny_free_superslab() entries _Atomic uint64_t g_free_local_box_calls = 0; // same-thread freelist pushes _Atomic uint64_t g_free_remote_box_calls = 0; // cross-thread remote pushes // Superslab/slab observability (Tiny-only; relaxed updates) _Atomic uint64_t g_ss_live_by_class[8] = {0}; _Atomic uint64_t g_ss_empty_events[8] = {0}; _Atomic uint64_t g_slab_live_events[8] = {0}; // ============================================================================ // Statistics Update Implementation // ============================================================================ void ss_stats_os_alloc(uint8_t size_class, size_t ss_size) { pthread_mutex_lock(&g_superslab_lock); g_superslabs_allocated++; if (size_class < 8) { g_ss_alloc_by_class[size_class]++; } g_bytes_allocated += ss_size; pthread_mutex_unlock(&g_superslab_lock); } void ss_stats_cache_reuse(void) { pthread_mutex_lock(&g_superslab_lock); g_superslabs_reused++; pthread_mutex_unlock(&g_superslab_lock); } void ss_stats_cache_store(void) { pthread_mutex_lock(&g_superslab_lock); g_superslabs_cached++; pthread_mutex_unlock(&g_superslab_lock); } void ss_stats_on_ss_alloc_class(int class_idx) { if (class_idx >= 0 && class_idx < 8) { atomic_fetch_add_explicit(&g_ss_live_by_class[class_idx], 1, memory_order_relaxed); } } void ss_stats_on_ss_free_class(int class_idx) { if (class_idx >= 0 && class_idx < 8) { // Saturating-style decrement to avoid underflow from mismatched hooks uint64_t prev = atomic_load_explicit(&g_ss_live_by_class[class_idx], memory_order_relaxed); if (prev > 0) { atomic_fetch_sub_explicit(&g_ss_live_by_class[class_idx], 1, memory_order_relaxed); } } } void ss_stats_on_ss_scan(int class_idx, int slab_live, int is_empty) { if (class_idx < 0 || class_idx >= 8) { return; } if (slab_live > 0) { atomic_fetch_add_explicit(&g_slab_live_events[class_idx], (uint64_t)slab_live, memory_order_relaxed); } if (is_empty) { atomic_fetch_add_explicit(&g_ss_empty_events[class_idx], 1, memory_order_relaxed); } } // ============================================================================ // Statistics Reporting Implementation // ============================================================================ void superslab_print_stats(SuperSlab* ss) { if (!ss || ss->magic != SUPERSLAB_MAGIC) { printf("Invalid SuperSlab\n"); return; } printf("=== SuperSlab Stats ===\n"); printf("Address: %p\n", (void*)ss); // Phase 12: per-SS size_class removed; classes are per-slab via meta->class_idx. printf("Active slabs: %u / %d\n", ss->active_slabs, ss_slabs_capacity(ss)); printf("Bitmap: 0x%08X\n", ss->slab_bitmap); printf("\nPer-slab details:\n"); for (int i = 0; i < ss_slabs_capacity(ss); i++) { if (ss->slab_bitmap & (1u << i)) { TinySlabMeta* meta = &ss->slabs[i]; printf(" Slab %2d: used=%u/%u freelist=%p class=%u owner_tid_low=%u\n", i, meta->used, meta->capacity, meta->freelist, (unsigned)meta->class_idx, (unsigned)meta->owner_tid_low); } } printf("\n"); } void superslab_print_global_stats(void) { pthread_mutex_lock(&g_superslab_lock); printf("=== Global SuperSlab Stats ===\n"); printf("SuperSlabs allocated: %lu\n", g_superslabs_allocated); printf("SuperSlabs freed: %lu\n", g_superslabs_freed); printf("SuperSlabs active: %lu\n", g_superslabs_allocated - g_superslabs_freed); printf("Total bytes allocated: %lu MB\n", g_bytes_allocated / (1024 * 1024)); pthread_mutex_unlock(&g_superslab_lock); } void ss_stats_dump_if_requested(void) { const char* env = getenv("HAKMEM_SS_STATS_DUMP"); if (!env || !*env || *env == '0') { return; } fprintf(stderr, "[SS_STATS] class live empty_events slab_live_events\n"); for (int c = 0; c < 8; c++) { uint64_t live = atomic_load_explicit(&g_ss_live_by_class[c], memory_order_relaxed); uint64_t empty = atomic_load_explicit(&g_ss_empty_events[c], memory_order_relaxed); uint64_t slab_live = atomic_load_explicit(&g_slab_live_events[c], memory_order_relaxed); if (live || empty || slab_live) { fprintf(stderr, " C%d: live=%llu empty=%llu slab_live=%llu\n", c, (unsigned long long)live, (unsigned long long)empty, (unsigned long long)slab_live); } } }