// tiny_alloc_fast.inc.h - Box 5: Allocation Fast Path (3-4 instructions) // Purpose: Ultra-fast TLS freelist pop (inspired by System tcache & Mid-Large HAKX +171%) // Invariant: Hit rate > 95% → 3-4 instructions, Miss → refill from backend // Design: "Simple Front + Smart Back" - Front is dumb & fast, Back is smart // // Box 5-NEW: SFC (Super Front Cache) Integration // Architecture: SFC (Layer 0, 128-256 slots) → SLL (Layer 1, unlimited) → SuperSlab (Layer 2+) // Cascade Refill: SFC ← SLL (one-way, safe) // Goal: +200% performance (4.19M → 12M+ ops/s) // // Phase 2b: Adaptive TLS Cache Sizing // Hot classes grow to 2048 slots, cold classes shrink to 16 slots // Expected: +3-10% performance, -30-50% TLS cache memory overhead #pragma once #include "tiny_atomic.h" #include "hakmem_tiny.h" #include "tiny_route.h" #include "tiny_alloc_fast_sfc.inc.h" // Box 5-NEW: SFC Layer #include "hakmem_tiny_fastcache.inc.h" // Array stack (FastCache) for C0–C3 #include "hakmem_tiny_tls_list.h" // TLS List (for tiny_fast_refill_and_take) #include "tiny_region_id.h" // Phase 7: Header-based class_idx lookup #include "tiny_adaptive_sizing.h" // Phase 2b: Adaptive sizing #include "box/tls_sll_box.h" // Box TLS-SLL: C7-safe push/pop/splice #include "box/tiny_next_ptr_box.h" // Box API: Next pointer read/write #ifdef HAKMEM_TINY_FRONT_GATE_BOX #include "box/front_gate_box.h" #endif #include "hakmem_tiny_integrity.h" // PRIORITY 1-4: Corruption detection #ifdef HAKMEM_TINY_HEADER_CLASSIDX #include "front/tiny_front_c23.h" // Phase B: Ultra-simple C2/C3 front #include "front/tiny_heap_v2.h" // Phase 13-A: TinyHeapV2 magazine front #include "front/tiny_ultra_hot.h" // Phase 14: TinyUltraHot C1/C2 ultra-fast path #endif #include // Phase 7 Task 2: Aggressive inline TLS cache access // Enable with: make HEADER_CLASSIDX=1 AGGRESSIVE_INLINE=1 #ifndef HAKMEM_TINY_AGGRESSIVE_INLINE #define HAKMEM_TINY_AGGRESSIVE_INLINE 0 #endif #if HAKMEM_TINY_AGGRESSIVE_INLINE #include "tiny_alloc_fast_inline.h" #endif // ========== Debug Counters (compile-time gated) ========== #if HAKMEM_DEBUG_COUNTERS // Refill-stage counters (defined in hakmem_tiny.c) extern unsigned long long g_rf_total_calls[]; extern unsigned long long g_rf_hit_bench[]; extern unsigned long long g_rf_hit_hot[]; extern unsigned long long g_rf_hit_mail[]; extern unsigned long long g_rf_hit_slab[]; extern unsigned long long g_rf_hit_ss[]; extern unsigned long long g_rf_hit_reg[]; extern unsigned long long g_rf_mmap_calls[]; // Publish hits (defined in hakmem_tiny.c) extern unsigned long long g_pub_mail_hits[]; extern unsigned long long g_pub_bench_hits[]; extern unsigned long long g_pub_hot_hits[]; // Free pipeline (defined in hakmem_tiny.c) extern unsigned long long g_free_via_tls_sll[]; #endif // ========== Box 5: Allocation Fast Path ========== // 箱理論の Fast Allocation 層。TLS freelist から直接 pop(3-4命令)。 // 不変条件: // - TLS freelist が非空なら即座に return (no lock, no sync) // - Miss なら Backend (Box 3: SuperSlab) に委譲 // - Cross-thread allocation は考慮しない(Backend が処理) // External TLS variables (defined in hakmem_tiny.c) extern __thread void* g_tls_sll_head[TINY_NUM_CLASSES]; extern __thread uint32_t g_tls_sll_count[TINY_NUM_CLASSES]; // External backend functions // P0 Fix: Use appropriate refill function based on P0 status #if HAKMEM_TINY_P0_BATCH_REFILL extern int sll_refill_batch_from_ss(int class_idx, int max_take); #else extern int sll_refill_small_from_ss(int class_idx, int max_take); #endif // NEW: Direct SS→FC refill (bypasses SLL) extern int ss_refill_fc_fill(int class_idx, int want); extern void* hak_tiny_alloc_slow(size_t size, int class_idx); extern int hak_tiny_size_to_class(size_t size); extern int tiny_refill_failfast_level(void); extern const size_t g_tiny_class_sizes[]; // Hot-class toggle: class5 (256B) dedicated TLS fast path extern int g_tiny_hotpath_class5; // Minimal class5 refill helper: fixed, branch-light refill into TLS List, then take one // Preconditions: class_idx==5 and g_tiny_hotpath_class5==1 static inline void* tiny_class5_minirefill_take(void) { extern __thread TinyTLSList g_tls_lists[TINY_NUM_CLASSES]; TinyTLSList* tls5 = &g_tls_lists[5]; // Fast pop if available void* base = tls_list_pop(tls5, 5); if (base) { // ✅ FIX #16: Return BASE pointer (not USER) // Caller will apply HAK_RET_ALLOC which does BASE → USER conversion return base; } // Robust refill via generic helper(header対応・境界検証済み) return tiny_fast_refill_and_take(5, tls5); } // Global Front refill config (parsed at init; defined in hakmem_tiny.c) extern int g_refill_count_global; extern int g_refill_count_hot; extern int g_refill_count_mid; extern int g_refill_count_class[TINY_NUM_CLASSES]; // HAK_RET_ALLOC macro is now defined in core/hakmem_tiny.c // See lines 116-152 for single definition point based on HAKMEM_TINY_HEADER_CLASSIDX // ========== RDTSC Profiling (lightweight) ========== #ifdef __x86_64__ static inline uint64_t tiny_fast_rdtsc(void) { unsigned int lo, hi; __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi)); return ((uint64_t)hi << 32) | lo; } #else static inline uint64_t tiny_fast_rdtsc(void) { return 0; } #endif // Per-thread profiling counters (enable with HAKMEM_TINY_PROFILE=1) static __thread uint64_t g_tiny_alloc_hits = 0; static __thread uint64_t g_tiny_alloc_cycles = 0; static __thread uint64_t g_tiny_refill_calls = 0; static __thread uint64_t g_tiny_refill_cycles = 0; static int g_tiny_profile_enabled = -1; // -1: uninitialized static inline int tiny_profile_enabled(void) { if (__builtin_expect(g_tiny_profile_enabled == -1, 0)) { const char* env = getenv("HAKMEM_TINY_PROFILE"); g_tiny_profile_enabled = (env && *env && *env != '0') ? 1 : 0; } return g_tiny_profile_enabled; } // Print profiling results at exit static void tiny_fast_print_profile(void) __attribute__((destructor)); static void tiny_fast_print_profile(void) { if (!tiny_profile_enabled()) return; if (g_tiny_alloc_hits == 0 && g_tiny_refill_calls == 0) return; fprintf(stderr, "\n========== Box Theory Fast Path Profile ==========\n"); if (g_tiny_alloc_hits > 0) { fprintf(stderr, "[ALLOC HIT] count=%lu, avg_cycles=%lu\n", (unsigned long)g_tiny_alloc_hits, (unsigned long)(g_tiny_alloc_cycles / g_tiny_alloc_hits)); } if (g_tiny_refill_calls > 0) { fprintf(stderr, "[REFILL] count=%lu, avg_cycles=%lu\n", (unsigned long)g_tiny_refill_calls, (unsigned long)(g_tiny_refill_cycles / g_tiny_refill_calls)); } fprintf(stderr, "===================================================\n\n"); } // ========== Fast Path: TLS Freelist Pop (3-4 instructions) ========== // External SFC control (defined in hakmem_tiny_sfc.c) extern int g_sfc_enabled; // Allocation fast path (inline for zero-cost) // Returns: pointer on success, NULL on miss (caller should try refill/slow) // // Box 5-NEW Architecture: // Layer 0: SFC (128-256 slots, high hit rate) [if enabled] // Layer 1: SLL (unlimited, existing) // Cascade: SFC miss → try SLL → refill // // Assembly (x86-64, optimized): // mov rax, QWORD PTR g_sfc_head[class_idx] ; SFC: Load head // test rax, rax ; Check NULL // jne .sfc_hit ; If not empty, SFC hit! // mov rax, QWORD PTR g_tls_sll_head[class_idx] ; SLL: Load head // test rax, rax ; Check NULL // je .miss ; If empty, miss // mov rdx, QWORD PTR [rax] ; Load next // mov QWORD PTR g_tls_sll_head[class_idx], rdx ; Update head // ret ; Return ptr // .sfc_hit: // mov rdx, QWORD PTR [rax] ; Load next // mov QWORD PTR g_sfc_head[class_idx], rdx ; Update head // ret // .miss: // ; Fall through to refill // // Expected: 3-4 instructions on SFC hit, 6-8 on SLL hit static inline void* tiny_alloc_fast_pop(int class_idx) { // PRIORITY 1: Bounds check before any TLS array access HAK_CHECK_CLASS_IDX(class_idx, "tiny_alloc_fast_pop"); #if !HAKMEM_BUILD_RELEASE // Phase 3: Debug counters eliminated in release builds atomic_fetch_add(&g_integrity_check_class_bounds, 1); // DEBUG: Log class 2 pops (DISABLED for performance) static _Atomic uint64_t g_fast_pop_count = 0; uint64_t pop_call = atomic_fetch_add(&g_fast_pop_count, 1); if (0 && class_idx == 2 && pop_call > 5840 && pop_call < 5900) { fprintf(stderr, "[FAST_POP_C2] call=%lu cls=%d head=%p count=%u\n", pop_call, class_idx, g_tls_sll_head[class_idx], g_tls_sll_count[class_idx]); fflush(stderr); } #endif // Phase E1-CORRECT: C7 now has headers, can use fast path #ifdef HAKMEM_TINY_FRONT_GATE_BOX void* out = NULL; if (front_gate_try_pop(class_idx, &out)) { return out; } return NULL; #else // Phase 7 Task 3: Profiling overhead removed in release builds // In release mode, compiler can completely eliminate profiling code #if !HAKMEM_BUILD_RELEASE uint64_t start = tiny_profile_enabled() ? tiny_fast_rdtsc() : 0; #endif // Phase 1: Try array stack (FastCache) first for hottest tiny classes (C0–C3) if (__builtin_expect(g_fastcache_enable && class_idx <= 3, 1)) { void* fc = fastcache_pop(class_idx); if (__builtin_expect(fc != NULL, 1)) { // Frontend FastCache hit extern unsigned long long g_front_fc_hit[]; g_front_fc_hit[class_idx]++; return fc; } else { extern unsigned long long g_front_fc_miss[]; g_front_fc_miss[class_idx]++; } } // Box 5-NEW: Layer 0 - Try SFC first (if enabled) // Cache g_sfc_enabled in TLS to avoid global load on every allocation static __thread int sfc_check_done = 0; static __thread int sfc_is_enabled = 0; if (__builtin_expect(!sfc_check_done, 0)) { sfc_is_enabled = g_sfc_enabled; sfc_check_done = 1; } if (__builtin_expect(sfc_is_enabled, 1)) { void* base = sfc_alloc(class_idx); if (__builtin_expect(base != NULL, 1)) { // Front Gate: SFC hit extern unsigned long long g_front_sfc_hit[]; g_front_sfc_hit[class_idx]++; // 🚀 SFC HIT! (Layer 0) #if !HAKMEM_BUILD_RELEASE if (start) { g_tiny_alloc_cycles += (tiny_fast_rdtsc() - start); g_tiny_alloc_hits++; } #endif // ✅ FIX #16: Return BASE pointer (not USER) // Caller (tiny_alloc_fast) will call HAK_RET_ALLOC → tiny_region_id_write_header // which does the BASE → USER conversion. Double conversion was causing corruption! return base; } // SFC miss → try SLL (Layer 1) } // Box Boundary: Layer 1 - TLS SLL freelist の先頭を pop(envで無効化可) extern int g_tls_sll_enable; // set at init via HAKMEM_TINY_TLS_SLL if (__builtin_expect(g_tls_sll_enable, 1)) { // Use Box TLS-SLL API (C7-safe pop) // CRITICAL: Pop FIRST, do NOT read g_tls_sll_head directly (race condition!) // Reading head before pop causes stale read → rbp=0xa0 SEGV void* base = NULL; if (tls_sll_pop(class_idx, &base)) { // Front Gate: SLL hit (fast path 3 instructions) extern unsigned long long g_front_sll_hit[]; g_front_sll_hit[class_idx]++; #if HAKMEM_DEBUG_COUNTERS // Track TLS freelist hits (compile-time gated, zero runtime cost when disabled) g_free_via_tls_sll[class_idx]++; #endif #if !HAKMEM_BUILD_RELEASE // Debug: Track profiling (release builds skip this overhead) if (start) { g_tiny_alloc_cycles += (tiny_fast_rdtsc() - start); g_tiny_alloc_hits++; } #endif // ✅ FIX #16: Return BASE pointer (not USER) // Caller (tiny_alloc_fast) will call HAK_RET_ALLOC → tiny_region_id_write_header // which does the BASE → USER conversion. Double conversion was causing corruption! return base; } } // Fast path miss → NULL (caller should refill) return NULL; #endif } // ========== Cascade Refill: SFC ← SLL (Box Theory boundary) ========== // Cascade refill: Transfer blocks from SLL to SFC (one-way, safe) // Returns: number of blocks transferred // // Contract: // - Transfer ownership: SLL → SFC // - No circular dependency: one-way only // - Boundary clear: SLL pop → SFC push // - Fallback safe: if SFC full, stop (no overflow) // Env-driven cascade percentage (0-100), default 50% static inline int sfc_cascade_pct(void) { static int pct = -1; if (__builtin_expect(pct == -1, 0)) { const char* e = getenv("HAKMEM_SFC_CASCADE_PCT"); int v = e && *e ? atoi(e) : 50; if (v < 0) v = 0; if (v > 100) v = 100; pct = v; } return pct; } static inline int sfc_refill_from_sll(int class_idx, int target_count) { // PRIORITY 1: Bounds check HAK_CHECK_CLASS_IDX(class_idx, "sfc_refill_from_sll"); atomic_fetch_add(&g_integrity_check_class_bounds, 1); int transferred = 0; uint32_t cap = g_sfc_capacity[class_idx]; // Adjust target based on cascade percentage int pct = sfc_cascade_pct(); int want = (target_count * pct) / 100; if (want <= 0) want = target_count / 2; // safety fallback while (transferred < want && g_tls_sll_count[class_idx] > 0) { // Check SFC capacity before transfer if (g_sfc_count[class_idx] >= cap) { break; // SFC full, stop } // Pop from SLL (Layer 1) using Box TLS-SLL API (C7-safe) void* ptr = NULL; if (!tls_sll_pop(class_idx, &ptr)) { break; // SLL empty } // Push to SFC (Layer 0) — header-aware tiny_next_write(class_idx, ptr, g_sfc_head[class_idx]); g_sfc_head[class_idx] = ptr; g_sfc_count[class_idx]++; transferred++; } return transferred; } // ========== Refill Path: Backend Integration ========== // Refill TLS freelist from backend (SuperSlab/ACE/Learning layer) // Returns: number of blocks refilled // // Box 5-NEW Architecture: // SFC enabled: SuperSlab → SLL → SFC (cascade) // SFC disabled: SuperSlab → SLL (direct, old path) // // This integrates with existing HAKMEM infrastructure: // - SuperSlab provides memory chunks // - ACE provides adaptive capacity learning // - L25 provides mid-large integration // // Refill count is tunable via HAKMEM_TINY_REFILL_COUNT (default: 16) // - Smaller count (8-16): better for diverse workloads, faster warmup // - Larger count (64-128): better for homogeneous workloads, fewer refills static inline int tiny_alloc_fast_refill(int class_idx) { // Phase E1-CORRECT: C7 now has headers, can use refill // Phase 7 Task 3: Profiling overhead removed in release builds // In release mode, compiler can completely eliminate profiling code #if !HAKMEM_BUILD_RELEASE uint64_t start = tiny_profile_enabled() ? tiny_fast_rdtsc() : 0; #endif // Phase 2b: Check available capacity before refill int available_capacity = get_available_capacity(class_idx); if (available_capacity <= 0) { // Cache is full, don't refill return 0; } // Phase 7 Task 3: Simplified refill count (cached per-class in TLS) // Previous: Complex precedence logic on every miss (5-10 cycles overhead) // Now: Simple TLS cache lookup (1-2 cycles) static __thread int s_refill_count[TINY_NUM_CLASSES] = {0}; // Simple adaptive booster: bump per-class refill size when refills are frequent. static __thread uint8_t s_refill_calls[TINY_NUM_CLASSES] = {0}; int cnt = s_refill_count[class_idx]; if (__builtin_expect(cnt == 0, 0)) { // First miss: Initialize from globals (parsed at init time) int v = HAKMEM_TINY_REFILL_DEFAULT; // Default from hakmem_build_flags.h // Precedence: per-class > hot/mid > global if (g_refill_count_class[class_idx] > 0) { v = g_refill_count_class[class_idx]; } else if (class_idx <= 3 && g_refill_count_hot > 0) { v = g_refill_count_hot; } else if (class_idx >= 4 && g_refill_count_mid > 0) { v = g_refill_count_mid; } else if (g_refill_count_global > 0) { v = g_refill_count_global; } // Clamp to sane range (min: 8, max: 256) if (v < 8) v = 8; // Minimum: avoid thrashing if (v > 256) v = 256; // Maximum: avoid excessive TLS memory s_refill_count[class_idx] = v; cnt = v; } // Phase 2b: Clamp refill count to available capacity if (cnt > available_capacity) { cnt = available_capacity; } #if HAKMEM_DEBUG_COUNTERS // Track refill calls (compile-time gated) g_rf_total_calls[class_idx]++; #endif // Box Boundary: Delegate to Backend (Box 3: SuperSlab) // Refill Dispatch: Standard (ss_refill_fc_fill) vs Legacy SLL (A/B only) // Standard: Enabled by FRONT_DIRECT=1, REFILL_BATCH=1, or P0_DIRECT_FC_ALL=1 // Legacy: Fallback for compatibility (will be deprecated) int refilled = 0; // NEW: Front-Direct refill control (A/B toggle) static __thread int s_use_front_direct = -1; if (__builtin_expect(s_use_front_direct == -1, 0)) { // Check multiple ENV flags (any one enables Front-Direct) const char* e1 = getenv("HAKMEM_TINY_FRONT_DIRECT"); const char* e2 = getenv("HAKMEM_TINY_P0_DIRECT_FC_ALL"); const char* e3 = getenv("HAKMEM_TINY_REFILL_BATCH"); s_use_front_direct = ((e1 && *e1 && *e1 != '0') || (e2 && *e2 && *e2 != '0') || (e3 && *e3 && *e3 != '0')) ? 1 : 0; } // Refill dispatch if (s_use_front_direct) { // NEW: Direct SS→FC (bypasses SLL) refilled = ss_refill_fc_fill(class_idx, cnt); } else { // Legacy: SS→SLL→FC (via batch or generic) #if HAKMEM_TINY_P0_BATCH_REFILL refilled = sll_refill_batch_from_ss(class_idx, cnt); #else refilled = sll_refill_small_from_ss(class_idx, cnt); #endif } // Lightweight adaptation: if refills keep happening, increase per-class refill. // Focus on class 7 (1024B) to reduce mmap/refill frequency under Tiny-heavy loads. if (refilled > 0) { uint8_t c = ++s_refill_calls[class_idx]; if (class_idx == 7) { // Every 4 refills, increase target by +16 up to 128 (unless overridden). if ((c & 0x03u) == 0) { int target = s_refill_count[class_idx]; if (target < 128) { target += 16; if (target > 128) target = 128; s_refill_count[class_idx] = target; } } } } else { // No refill performed (capacity full): slowly decay the counter. if (s_refill_calls[class_idx] > 0) s_refill_calls[class_idx]--; } // Phase 2b: Track refill and adapt cache size if (refilled > 0) { track_refill_for_adaptation(class_idx); } // Box 5-NEW: Cascade refill SFC ← SLL (opt-in via HAKMEM_TINY_SFC_CASCADE, off by default) // NEW: Default OFF, enable via HAKMEM_TINY_SFC_CASCADE=1 // Skip entirely when Front-Direct is active (direct SS→FC path) static __thread int sfc_cascade_enabled = -1; if (__builtin_expect(sfc_cascade_enabled == -1, 0)) { // Front-Direct bypasses SLL, so SFC cascade is pointless if (s_use_front_direct) { sfc_cascade_enabled = 0; } else { // Check ENV flag (default: OFF) const char* e = getenv("HAKMEM_TINY_SFC_CASCADE"); sfc_cascade_enabled = (e && *e && *e != '0') ? 1 : 0; } } // Only cascade if explicitly enabled AND we have refilled blocks in SLL if (sfc_cascade_enabled && g_sfc_enabled && refilled > 0) { // Skip SFC cascade for class5 when dedicated hotpath is enabled if (g_tiny_hotpath_class5 && class_idx == 5) { // no-op: keep refilled blocks in TLS List/SLL } else { // Transfer half of refilled blocks to SFC (keep half in SLL for future) int sfc_target = refilled / 2; if (sfc_target > 0) { #ifdef HAKMEM_TINY_FRONT_GATE_BOX front_gate_after_refill(class_idx, refilled); #else int transferred = sfc_refill_from_sll(class_idx, sfc_target); (void)transferred; // Unused, but could track stats #endif } } } #if !HAKMEM_BUILD_RELEASE // Debug: Track profiling (release builds skip this overhead) if (start) { g_tiny_refill_cycles += (tiny_fast_rdtsc() - start); g_tiny_refill_calls++; } #endif return refilled; } // ========== Combined Fast Path (Alloc + Refill) ========== // Complete fast path allocation (inline for zero-cost) // Returns: pointer on success, NULL on failure (OOM or size too large) // // Flow: // 1. TLS freelist pop (3-4 instructions) - Hit rate ~95% // 2. Miss → Refill from backend (~5% cases) // 3. Refill success → Retry pop // 4. Refill failure → Slow path (OOM or new SuperSlab allocation) // // Example usage: // void* ptr = tiny_alloc_fast(64); // if (!ptr) { // // OOM handling // } static inline void* tiny_alloc_fast(size_t size) { #if !HAKMEM_BUILD_RELEASE // Phase 3: Debug counters eliminated in release builds static _Atomic uint64_t alloc_call_count = 0; uint64_t call_num = atomic_fetch_add(&alloc_call_count, 1); #endif // 1. Size → class index (inline, fast) int class_idx = hak_tiny_size_to_class(size); if (__builtin_expect(class_idx < 0, 0)) { return NULL; // Size > 1KB, not Tiny } #if !HAKMEM_BUILD_RELEASE // Phase 3: Debug checks eliminated in release builds // CRITICAL: Bounds check to catch corruption if (__builtin_expect(class_idx >= TINY_NUM_CLASSES, 0)) { fprintf(stderr, "[TINY_ALLOC_FAST] FATAL: class_idx=%d out of bounds! size=%zu call=%lu\n", class_idx, size, call_num); fflush(stderr); abort(); } // Debug logging (DISABLED for performance) if (0 && call_num > 14250 && call_num < 14280) { fprintf(stderr, "[TINY_ALLOC] call=%lu size=%zu class=%d sll_head[%d]=%p count=%u\n", call_num, size, class_idx, class_idx, g_tls_sll_head[class_idx], g_tls_sll_count[class_idx]); fflush(stderr); } #endif ROUTE_BEGIN(class_idx); void* ptr = NULL; const int hot_c5 = (g_tiny_hotpath_class5 && class_idx == 5); // Phase B: Ultra-simple front for C2/C3 (128B/256B) // ENV-gated: HAKMEM_TINY_FRONT_C23_SIMPLE=1 // Target: 15-20M ops/s (vs current 8-9M ops/s) #ifdef HAKMEM_TINY_HEADER_CLASSIDX if (tiny_front_c23_enabled() && (class_idx == 2 || class_idx == 3)) { void* c23_ptr = tiny_front_c23_alloc(size, class_idx); if (c23_ptr) { HAK_RET_ALLOC(class_idx, c23_ptr); } // Fall through to existing path if C23 path failed (NULL) } #endif // Phase 14-C: TinyUltraHot Borrowing Design (正史から借りる設計) // ENV-gated: HAKMEM_TINY_ULTRA_HOT=1 (default: ON) // Targets C2-C5 (16B-128B) // Design: UltraHot は TLS SLL から借りたブロックを magazine に保持 // - Hit: magazine から返す (L0, fastest) // - Miss: TLS SLL から refill して再試行 if (__builtin_expect(ultra_hot_enabled(), 1)) { void* base = ultra_hot_alloc(size); if (base) { HAK_RET_ALLOC(class_idx, base); // Header write + return USER pointer } // Miss → TLS SLL から借りて refill(正史から借用) if (class_idx >= 2 && class_idx <= 5) { ultra_hot_try_refill(class_idx); // Retry after refill base = ultra_hot_alloc(size); if (base) { HAK_RET_ALLOC(class_idx, base); } } } // Phase 13-A: TinyHeapV2 (per-thread magazine, experimental) // ENV-gated: HAKMEM_TINY_HEAP_V2=1 // Targets class 0-3 (8-64B) only, falls back to existing path if NULL // PERF: Pass class_idx directly to avoid redundant size→class conversion if (__builtin_expect(tiny_heap_v2_enabled(), 0) && class_idx <= 3) { void* base = tiny_heap_v2_alloc_by_class(class_idx); if (base) { HAK_RET_ALLOC(class_idx, base); // Header write + return USER pointer } } // NEW: Front-Direct/SLL-OFF bypass control (TLS cached, lazy init) static __thread int s_front_direct_alloc = -1; if (__builtin_expect(s_front_direct_alloc == -1, 0)) { const char* e = getenv("HAKMEM_TINY_FRONT_DIRECT"); s_front_direct_alloc = (e && *e && *e != '0') ? 1 : 0; } if (__builtin_expect(hot_c5, 0)) { // class5: 専用最短経路(generic frontは一切通らない) void* p = tiny_class5_minirefill_take(); if (p) HAK_RET_ALLOC(class_idx, p); int refilled = tiny_alloc_fast_refill(class_idx); if (__builtin_expect(refilled > 0, 1)) { p = tiny_class5_minirefill_take(); if (p) HAK_RET_ALLOC(class_idx, p); } // slow pathへ(genericフロントは回避) ptr = hak_tiny_alloc_slow(size, class_idx); if (ptr) HAK_RET_ALLOC(class_idx, ptr); return ptr; // NULL if OOM } // Generic front (FastCache/SFC/SLL) // Respect SLL global toggle AND Front-Direct mode; when either disabled, skip TLS SLL entirely if (__builtin_expect(g_tls_sll_enable && !s_front_direct_alloc, 1)) { // For classes 0..3 keep ultra-inline POP; for >=4 use safe Box POP to avoid UB on bad heads. if (class_idx <= 3) { #if HAKMEM_TINY_INLINE_SLL // Experimental: Inline SLL pop (A/B only, requires HAKMEM_TINY_INLINE_SLL=1) TINY_ALLOC_FAST_POP_INLINE(class_idx, ptr); #else // Default: Safe Box API (Box TLS-SLL) for all standard builds ptr = tiny_alloc_fast_pop(class_idx); #endif } else { void* base = NULL; if (tls_sll_pop(class_idx, &base)) ptr = base; else ptr = NULL; } } else { ptr = NULL; // SLL disabled OR Front-Direct active → bypass SLL } if (__builtin_expect(ptr != NULL, 1)) { HAK_RET_ALLOC(class_idx, ptr); } // Generic: Refill and take (Front-Direct vs Legacy) if (s_front_direct_alloc) { // Front-Direct: Direct SS→FC refill (bypasses SLL/TLS List) int refilled_fc = tiny_alloc_fast_refill(class_idx); if (__builtin_expect(refilled_fc > 0, 1)) { void* fc_ptr = fastcache_pop(class_idx); if (fc_ptr) { HAK_RET_ALLOC(class_idx, fc_ptr); } } } else { // Legacy: Refill to TLS List/SLL extern __thread TinyTLSList g_tls_lists[TINY_NUM_CLASSES]; void* took = tiny_fast_refill_and_take(class_idx, &g_tls_lists[class_idx]); if (took) { HAK_RET_ALLOC(class_idx, took); } } // Backend refill後に再トライ { int refilled = tiny_alloc_fast_refill(class_idx); if (__builtin_expect(refilled > 0, 1)) { // Skip SLL retry if Front-Direct OR SLL disabled if (__builtin_expect(g_tls_sll_enable && !s_front_direct_alloc, 1)) { if (class_idx <= 3) { #if HAKMEM_TINY_INLINE_SLL // Experimental: Inline SLL pop (A/B only, requires HAKMEM_TINY_INLINE_SLL=1) TINY_ALLOC_FAST_POP_INLINE(class_idx, ptr); #else // Default: Safe Box API (Box TLS-SLL) for all standard builds ptr = tiny_alloc_fast_pop(class_idx); #endif } else { void* base2 = NULL; if (tls_sll_pop(class_idx, &base2)) ptr = base2; else ptr = NULL; } } else { ptr = NULL; // SLL disabled OR Front-Direct active → bypass SLL } if (ptr) { HAK_RET_ALLOC(class_idx, ptr); } } } // 5. Refill failure or still empty → slow path (OOM or new SuperSlab) // Box Boundary: Delegate to Slow Path (Box 3 backend) ptr = hak_tiny_alloc_slow(size, class_idx); if (ptr) { HAK_RET_ALLOC(class_idx, ptr); } return ptr; // NULL if OOM } // ========== Push to TLS Freelist (for free path) ========== // Push block to TLS freelist (used by free fast path) // This is a "helper" for Box 6 (Free Fast Path) // // Invariant: ptr must belong to current thread (no ownership check here) // Caller (Box 6) is responsible for ownership verification static inline void tiny_alloc_fast_push(int class_idx, void* ptr) { #ifdef HAKMEM_TINY_FRONT_GATE_BOX front_gate_push_tls(class_idx, ptr); #else // Box Boundary: Push to TLS freelist using Box TLS-SLL API (C7-safe) uint32_t capacity = UINT32_MAX; // Unlimited for helper function if (!tls_sll_push(class_idx, ptr, capacity)) { // C7 rejected or SLL somehow full (should not happen) // In release builds, this is a no-op (caller expects success) #if !HAKMEM_BUILD_RELEASE fprintf(stderr, "[WARN] tls_sll_push failed in tiny_alloc_fast_push cls=%d ptr=%p\n", class_idx, ptr); #endif } #endif } // ========== Statistics & Diagnostics ========== // Get TLS freelist stats (for debugging/profiling) typedef struct { int class_idx; void* head; uint32_t count; } TinyAllocFastStats; static inline TinyAllocFastStats tiny_alloc_fast_stats(int class_idx) { TinyAllocFastStats stats = { .class_idx = class_idx, .head = g_tls_sll_head[class_idx], .count = g_tls_sll_count[class_idx] }; return stats; } // Reset TLS freelist (for testing/benchmarking) // WARNING: This leaks memory! Only use in controlled test environments. static inline void tiny_alloc_fast_reset(int class_idx) { g_tls_sll_head[class_idx] = NULL; g_tls_sll_count[class_idx] = 0; } // ========== Performance Notes ========== // // Expected metrics (based on System tcache & HAKX +171% results): // - Fast path hit rate: 95%+ (workload dependent) // - Fast path latency: 3-4 instructions (1-2 cycles on modern CPUs) // - Miss penalty: ~20-50 instructions (refill from SuperSlab) // - Throughput improvement: +10-25% vs current multi-layer design // // Key optimizations: // 1. `__builtin_expect` for branch prediction (hot path first) // 2. `static inline` for zero-cost abstraction // 3. TLS variables (no atomic ops, no locks) // 4. Minimal work in fast path (defer stats/accounting to backend) // // Comparison with current design: // - Current: 20+ instructions (Magazine → SuperSlab → ACE → ...) // - New: 3-4 instructions (TLS freelist pop only) // - Reduction: -80% instructions in hot path // // Inspired by: // - System tcache (glibc malloc) - 3-4 instruction fast path // - HAKX Mid-Large (+171%) - "Simple Front + Smart Back" // - Box Theory - Clear boundaries, minimal coupling