// tiny_ring_cache.c - Phase 21-1: Ring cache implementation #include "tiny_ring_cache.h" #include "../box/tls_sll_box.h" // For tls_sll_pop/push (Phase 21-1-C refill) #include #include // ============================================================================ // TLS Variables (defined here, extern in header) // ============================================================================ __thread TinyRingCache g_ring_cache_c2 = {NULL, 0, 0, 0, 0}; __thread TinyRingCache g_ring_cache_c3 = {NULL, 0, 0, 0, 0}; __thread TinyRingCache g_ring_cache_c5 = {NULL, 0, 0, 0, 0}; // ============================================================================ // Metrics (Phase 21-1-E, optional for Phase 21-1-C) // ============================================================================ #if !HAKMEM_BUILD_RELEASE __thread uint64_t g_ring_cache_hit[8] = {0}; __thread uint64_t g_ring_cache_miss[8] = {0}; __thread uint64_t g_ring_cache_push[8] = {0}; __thread uint64_t g_ring_cache_full[8] = {0}; __thread uint64_t g_ring_cache_refill[8] = {0}; #endif // ============================================================================ // Init (called at thread start, from hakmem_tiny.c) // ============================================================================ void ring_cache_init(void) { if (!ring_cache_enabled()) return; // C2 init size_t cap_c2 = ring_capacity_c2(); g_ring_cache_c2.slots = (void**)calloc(cap_c2, sizeof(void*)); if (!g_ring_cache_c2.slots) { #if !HAKMEM_BUILD_RELEASE fprintf(stderr, "[Ring-INIT] Failed to allocate C2 ring (%zu slots)\n", cap_c2); fflush(stderr); #endif return; } g_ring_cache_c2.capacity = (uint16_t)cap_c2; g_ring_cache_c2.mask = (uint16_t)(cap_c2 - 1); g_ring_cache_c2.head = 0; g_ring_cache_c2.tail = 0; // C3 init size_t cap_c3 = ring_capacity_c3(); g_ring_cache_c3.slots = (void**)calloc(cap_c3, sizeof(void*)); if (!g_ring_cache_c3.slots) { #if !HAKMEM_BUILD_RELEASE fprintf(stderr, "[Ring-INIT] Failed to allocate C3 ring (%zu slots)\n", cap_c3); fflush(stderr); #endif // Free C2 if C3 failed free(g_ring_cache_c2.slots); g_ring_cache_c2.slots = NULL; return; } g_ring_cache_c3.capacity = (uint16_t)cap_c3; g_ring_cache_c3.mask = (uint16_t)(cap_c3 - 1); g_ring_cache_c3.head = 0; g_ring_cache_c3.tail = 0; // C5 init size_t cap_c5 = ring_capacity_c5(); g_ring_cache_c5.slots = (void**)calloc(cap_c5, sizeof(void*)); if (!g_ring_cache_c5.slots) { #if !HAKMEM_BUILD_RELEASE fprintf(stderr, "[Ring-INIT] Failed to allocate C5 ring (%zu slots)\n", cap_c5); fflush(stderr); #endif // Free C2 and C3 if C5 failed free(g_ring_cache_c2.slots); g_ring_cache_c2.slots = NULL; free(g_ring_cache_c3.slots); g_ring_cache_c3.slots = NULL; return; } g_ring_cache_c5.capacity = (uint16_t)cap_c5; g_ring_cache_c5.mask = (uint16_t)(cap_c5 - 1); g_ring_cache_c5.head = 0; g_ring_cache_c5.tail = 0; #if !HAKMEM_BUILD_RELEASE fprintf(stderr, "[Ring-INIT] C2=%zu slots (%zu bytes), C3=%zu slots (%zu bytes), C5=%zu slots (%zu bytes)\n", cap_c2, cap_c2 * sizeof(void*), cap_c3, cap_c3 * sizeof(void*), cap_c5, cap_c5 * sizeof(void*)); fflush(stderr); #endif } // ============================================================================ // Shutdown (called at thread exit, optional) // ============================================================================ void ring_cache_shutdown(void) { if (!ring_cache_enabled()) return; // Drain rings to TLS SLL before shutdown (prevent leak) // TODO: Implement drain logic in Phase 21-1-C // Free ring buffers if (g_ring_cache_c2.slots) { free(g_ring_cache_c2.slots); g_ring_cache_c2.slots = NULL; } if (g_ring_cache_c3.slots) { free(g_ring_cache_c3.slots); g_ring_cache_c3.slots = NULL; } if (g_ring_cache_c5.slots) { free(g_ring_cache_c5.slots); g_ring_cache_c5.slots = NULL; } #if !HAKMEM_BUILD_RELEASE fprintf(stderr, "[Ring-SHUTDOWN] C2/C3/C5 rings freed\n"); fflush(stderr); #endif } // ============================================================================ // Refill from TLS SLL (cascade, Phase 21-1-C) // ============================================================================ // Refill ring from TLS SLL (one-way cascade: SLL → Ring) // Returns: number of blocks transferred int ring_refill_from_sll(int class_idx, int target_count) { if (!ring_cascade_enabled()) return 0; if (class_idx != 2 && class_idx != 3) return 0; int transferred = 0; while (transferred < target_count) { void* ptr = NULL; // Pop from TLS SLL if (!tls_sll_pop(class_idx, &ptr)) { break; // SLL empty } // Push to Ring if (!ring_cache_push(class_idx, ptr)) { // Ring full, push back to SLL tls_sll_push(class_idx, ptr, (uint32_t)-1); // Unlimited capacity break; } transferred++; } #if !HAKMEM_BUILD_RELEASE if (transferred > 0) { g_ring_cache_refill[class_idx]++; // Count refill operations fprintf(stderr, "[Ring-REFILL] C%d: %d blocks transferred from SLL to Ring\n", class_idx, transferred); fflush(stderr); } #endif return transferred; } // ============================================================================ // Stats (Phase 21-1-C/E metrics) // ============================================================================ void ring_cache_print_stats(void) { if (!ring_cache_enabled()) return; #if !HAKMEM_BUILD_RELEASE // Current occupancy uint16_t c2_count = (g_ring_cache_c2.tail >= g_ring_cache_c2.head) ? (g_ring_cache_c2.tail - g_ring_cache_c2.head) : (g_ring_cache_c2.capacity - g_ring_cache_c2.head + g_ring_cache_c2.tail); uint16_t c3_count = (g_ring_cache_c3.tail >= g_ring_cache_c3.head) ? (g_ring_cache_c3.tail - g_ring_cache_c3.head) : (g_ring_cache_c3.capacity - g_ring_cache_c3.head + g_ring_cache_c3.tail); fprintf(stderr, "\n[Ring-STATS] Ring Cache Metrics (C2/C3):\n"); fprintf(stderr, " C2: %u/%u slots occupied\n", c2_count, g_ring_cache_c2.capacity); fprintf(stderr, " C3: %u/%u slots occupied\n", c3_count, g_ring_cache_c3.capacity); // Metrics summary (C2/C3 only) for (int c = 2; c <= 3; c++) { uint64_t total_allocs = g_ring_cache_hit[c] + g_ring_cache_miss[c]; uint64_t total_frees = g_ring_cache_push[c] + g_ring_cache_full[c]; double hit_rate = (total_allocs > 0) ? (100.0 * g_ring_cache_hit[c] / total_allocs) : 0.0; double full_rate = (total_frees > 0) ? (100.0 * g_ring_cache_full[c] / total_frees) : 0.0; if (total_allocs > 0 || total_frees > 0) { fprintf(stderr, " C%d: hit=%llu miss=%llu (%.1f%% hit), push=%llu full=%llu (%.1f%% full), refill=%llu\n", c, (unsigned long long)g_ring_cache_hit[c], (unsigned long long)g_ring_cache_miss[c], hit_rate, (unsigned long long)g_ring_cache_push[c], (unsigned long long)g_ring_cache_full[c], full_rate, (unsigned long long)g_ring_cache_refill[c]); } } fflush(stderr); #endif }