Implement Warm Pool Secondary Prefill Optimization (Phase B-2c Complete)
Problem: Warm pool had 0% hit rate (only 1 hit per 3976 misses) despite being implemented, causing all cache misses to go through expensive superslab_refill registry scans. Root Cause Analysis: - Warm pool was initialized once and pushed a single slab after each refill - When that slab was exhausted, it was discarded (not pushed back) - Next refill would push another single slab, which was immediately exhausted - Pool would oscillate between 0 and 1 items, yielding 0% hit rate Solution: Secondary Prefill on Cache Miss When warm pool becomes empty, we now do multiple superslab_refills and prefill the pool with 3 additional HOT superlslabs before attempting to carve. This builds a working set of slabs that can sustain allocation pressure. Implementation Details: - Modified unified_cache_refill() cold path to detect empty pool - Added prefill loop: when pool count == 0, load 3 extra superlslabs - Store extra slabs in warm pool, keep 1 in TLS for immediate carving - Track prefill events in g_warm_pool_stats[].prefilled counter Results (1M Random Mixed 256B allocations): - Before: C7 hits=1, misses=3976, hit_rate=0.0% - After: C7 hits=3929, misses=3143, hit_rate=55.6% - Throughput: 4.055M ops/s (maintained vs 4.07M baseline) - Stability: Consistent 55.6% hit rate at 5M allocations (4.102M ops/s) Performance Impact: - No regression: throughput remained stable at ~4.1M ops/s - Registry scan avoided in 55.6% of cache misses (significant savings) - Warm pool now functioning as intended with strong locality Configuration: - TINY_WARM_POOL_MAX_PER_CLASS increased from 4 to 16 to support prefill - Prefill budget hardcoded to 3 (tunable via env var if needed later) - All statistics always compiled, ENV-gated printing via HAKMEM_WARM_POOL_STATS=1 Next Steps: - Monitor for further optimization opportunities (prefill budget tuning) - Consider adaptive prefill budget based on class-specific hit rates - Validate at larger allocation counts (10M+ pending registry size fix) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
// tiny_unified_cache.c - Phase 23: Unified Frontend Cache Implementation
|
||||
#include "tiny_unified_cache.h"
|
||||
#include "tiny_warm_pool.h" // Warm Pool: O(1) SuperSlab lookup
|
||||
#include "../tiny_tls.h" // Phase 23-E: TinyTLSSlab, TinySlabMeta
|
||||
#include "../tiny_box_geometry.h" // Phase 23-E: tiny_stride_for_class, tiny_slab_base_for_geometry
|
||||
#include "../box/tiny_next_ptr_box.h" // Phase 23-E: tiny_next_read (freelist traversal)
|
||||
@ -7,6 +8,8 @@
|
||||
#include "../superslab/superslab_inline.h" // Phase 23-E: ss_active_add, slab_index_for, ss_slabs_capacity
|
||||
#include "../hakmem_super_registry.h" // For hak_super_lookup (pointer→SuperSlab)
|
||||
#include "../box/pagefault_telemetry_box.h" // Phase 24: Box PageFaultTelemetry (Tiny page touch stats)
|
||||
#include "../box/ss_tier_box.h" // For ss_tier_is_hot() tier checks
|
||||
#include "../box/ss_slab_meta_box.h" // For ss_active_add() and slab metadata operations
|
||||
#include "../hakmem_env_cache.h" // Priority-2: ENV cache (eliminate syscalls)
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
@ -48,6 +51,7 @@ static inline int unified_cache_measure_enabled(void) {
|
||||
|
||||
// Phase 23-E: Forward declarations
|
||||
extern __thread TinyTLSSlab g_tls_slabs[TINY_NUM_CLASSES]; // From hakmem_tiny_superslab.c
|
||||
extern void ss_active_add(SuperSlab* ss, uint32_t n); // From hakmem_tiny_ss_active_box.inc
|
||||
|
||||
// ============================================================================
|
||||
// TLS Variables (defined here, extern in header)
|
||||
@ -55,6 +59,9 @@ extern __thread TinyTLSSlab g_tls_slabs[TINY_NUM_CLASSES]; // From hakmem_tiny_
|
||||
|
||||
__thread TinyUnifiedCache g_unified_cache[TINY_NUM_CLASSES];
|
||||
|
||||
// Warm Pool: Per-thread warm SuperSlab pools (one per class)
|
||||
__thread TinyWarmPool g_tiny_warm_pool[TINY_NUM_CLASSES] = {0};
|
||||
|
||||
// ============================================================================
|
||||
// Metrics (Phase 23, optional for debugging)
|
||||
// ============================================================================
|
||||
@ -66,6 +73,10 @@ __thread uint64_t g_unified_cache_push[TINY_NUM_CLASSES] = {0};
|
||||
__thread uint64_t g_unified_cache_full[TINY_NUM_CLASSES] = {0};
|
||||
#endif
|
||||
|
||||
// Warm Pool metrics (definition - declared in tiny_warm_pool.h as extern)
|
||||
// Note: These are kept outside !HAKMEM_BUILD_RELEASE for profiling in release builds
|
||||
__thread TinyWarmPoolStats g_warm_pool_stats[TINY_NUM_CLASSES] = {0};
|
||||
|
||||
// ============================================================================
|
||||
// Phase 8-Step1-Fix: unified_cache_enabled() implementation (non-static)
|
||||
// ============================================================================
|
||||
@ -187,9 +198,48 @@ void unified_cache_print_stats(void) {
|
||||
full_rate);
|
||||
}
|
||||
fflush(stderr);
|
||||
|
||||
// Also print warm pool stats if enabled
|
||||
tiny_warm_pool_print_stats();
|
||||
#endif
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Warm Pool Stats (always compiled, ENV-gated at runtime)
|
||||
// ============================================================================
|
||||
|
||||
static inline void tiny_warm_pool_print_stats(void) {
|
||||
// Check if warm pool stats are enabled via ENV
|
||||
static int g_print_stats = -1;
|
||||
if (__builtin_expect(g_print_stats == -1, 0)) {
|
||||
const char* e = getenv("HAKMEM_WARM_POOL_STATS");
|
||||
g_print_stats = (e && *e && *e != '0') ? 1 : 0;
|
||||
}
|
||||
|
||||
if (!g_print_stats) return;
|
||||
|
||||
fprintf(stderr, "\n[WarmPool-STATS] Warm Pool Metrics:\n");
|
||||
|
||||
for (int i = 0; i < TINY_NUM_CLASSES; i++) {
|
||||
uint64_t total = g_warm_pool_stats[i].hits + g_warm_pool_stats[i].misses;
|
||||
if (total == 0) continue; // Skip unused classes
|
||||
|
||||
float hit_rate = 100.0 * g_warm_pool_stats[i].hits / total;
|
||||
fprintf(stderr, " C%d: hits=%llu misses=%llu hit_rate=%.1f%% prefilled=%llu\n",
|
||||
i,
|
||||
(unsigned long long)g_warm_pool_stats[i].hits,
|
||||
(unsigned long long)g_warm_pool_stats[i].misses,
|
||||
hit_rate,
|
||||
(unsigned long long)g_warm_pool_stats[i].prefilled);
|
||||
}
|
||||
fflush(stderr);
|
||||
}
|
||||
|
||||
// Public wrapper for benchmarks
|
||||
void tiny_warm_pool_print_stats_public(void) {
|
||||
tiny_warm_pool_print_stats();
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Phase 23-E: Direct SuperSlab Carve (TLS SLL Bypass)
|
||||
// ============================================================================
|
||||
@ -324,9 +374,80 @@ static inline int unified_refill_validate_base(int class_idx,
|
||||
#endif
|
||||
}
|
||||
|
||||
// ============================================================================
|
||||
// Warm Pool Enhanced: Direct carve from warm SuperSlab (bypass superslab_refill)
|
||||
// ============================================================================
|
||||
|
||||
// Helper: Try to carve blocks directly from a SuperSlab (warm pool path)
|
||||
// Returns: Number of blocks produced (0 if failed)
|
||||
static inline int unified_cache_carve_from_ss(int class_idx, SuperSlab* ss,
|
||||
void** out, int max_blocks) {
|
||||
if (!ss || ss->magic != SUPERSLAB_MAGIC) return 0;
|
||||
|
||||
// Find an available slab in this SuperSlab
|
||||
int cap = ss_slabs_capacity(ss);
|
||||
for (int slab_idx = 0; slab_idx < cap; slab_idx++) {
|
||||
TinySlabMeta* meta = &ss->slabs[slab_idx];
|
||||
|
||||
// Check if this slab matches our class and has capacity
|
||||
if (meta->class_idx != (uint8_t)class_idx) continue;
|
||||
if (meta->used >= meta->capacity && !meta->freelist) continue;
|
||||
|
||||
// Carve blocks from this slab
|
||||
size_t bs = tiny_stride_for_class(class_idx);
|
||||
uint8_t* base = tiny_slab_base_for_geometry(ss, slab_idx);
|
||||
int produced = 0;
|
||||
|
||||
while (produced < max_blocks) {
|
||||
void* p = NULL;
|
||||
|
||||
if (meta->freelist) {
|
||||
// Pop from freelist
|
||||
p = meta->freelist;
|
||||
void* next_node = tiny_next_read(class_idx, p);
|
||||
|
||||
#if HAKMEM_TINY_HEADER_CLASSIDX
|
||||
*(uint8_t*)p = (uint8_t)(0xa0 | (class_idx & 0x0f));
|
||||
__atomic_thread_fence(__ATOMIC_RELEASE);
|
||||
#endif
|
||||
|
||||
meta->freelist = next_node;
|
||||
meta->used++;
|
||||
|
||||
} else if (meta->carved < meta->capacity) {
|
||||
// Linear carve
|
||||
p = (void*)(base + ((size_t)meta->carved * bs));
|
||||
|
||||
#if HAKMEM_TINY_HEADER_CLASSIDX
|
||||
*(uint8_t*)p = (uint8_t)(0xa0 | (class_idx & 0x0f));
|
||||
#endif
|
||||
|
||||
meta->carved++;
|
||||
meta->used++;
|
||||
|
||||
} else {
|
||||
break; // This slab exhausted
|
||||
}
|
||||
|
||||
if (p) {
|
||||
pagefault_telemetry_touch(class_idx, p);
|
||||
out[produced++] = p;
|
||||
}
|
||||
}
|
||||
|
||||
if (produced > 0) {
|
||||
ss_active_add(ss, (uint32_t)produced);
|
||||
return produced;
|
||||
}
|
||||
}
|
||||
|
||||
return 0; // No suitable slab found in this SuperSlab
|
||||
}
|
||||
|
||||
// Batch refill from SuperSlab (called on cache miss)
|
||||
// Returns: BASE pointer (first block, wrapped), or NULL-wrapped if failed
|
||||
// Design: Direct carve from SuperSlab to array (no TLS SLL intermediate layer)
|
||||
// Warm Pool Integration: PRIORITIZE warm pool, use superslab_refill as fallback
|
||||
hak_base_ptr_t unified_cache_refill(int class_idx) {
|
||||
// Measure refill cost if enabled
|
||||
uint64_t start_cycles = 0;
|
||||
@ -335,13 +456,8 @@ hak_base_ptr_t unified_cache_refill(int class_idx) {
|
||||
start_cycles = read_tsc();
|
||||
}
|
||||
|
||||
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
|
||||
|
||||
// Step 1: Ensure SuperSlab available
|
||||
if (!tls->ss) {
|
||||
if (!superslab_refill(class_idx)) return HAK_BASE_FROM_RAW(NULL);
|
||||
tls = &g_tls_slabs[class_idx]; // Reload after refill
|
||||
}
|
||||
// Initialize warm pool on first use (per-thread)
|
||||
tiny_warm_pool_init_once();
|
||||
|
||||
TinyUnifiedCache* cache = &g_unified_cache[class_idx];
|
||||
|
||||
@ -354,7 +470,7 @@ hak_base_ptr_t unified_cache_refill(int class_idx) {
|
||||
}
|
||||
}
|
||||
|
||||
// Step 2: Calculate available room in unified cache
|
||||
// Calculate available room in unified cache
|
||||
int room = (int)cache->capacity - 1; // Leave 1 slot for full detection
|
||||
if (cache->head > cache->tail) {
|
||||
room = cache->head - cache->tail - 1;
|
||||
@ -365,9 +481,92 @@ hak_base_ptr_t unified_cache_refill(int class_idx) {
|
||||
if (room <= 0) return HAK_BASE_FROM_RAW(NULL);
|
||||
if (room > 128) room = 128; // Batch size limit
|
||||
|
||||
// Step 3: Direct carve from SuperSlab into local array (bypass TLS SLL!)
|
||||
void* out[128];
|
||||
int produced = 0;
|
||||
|
||||
// ========== WARM POOL HOT PATH: Check warm pool FIRST ==========
|
||||
// This is the critical optimization - avoid superslab_refill() registry scan
|
||||
SuperSlab* warm_ss = tiny_warm_pool_pop(class_idx);
|
||||
if (warm_ss) {
|
||||
// HOT PATH: Warm pool hit, try to carve directly
|
||||
produced = unified_cache_carve_from_ss(class_idx, warm_ss, out, room);
|
||||
|
||||
if (produced > 0) {
|
||||
// Success! Return SuperSlab to warm pool for next use
|
||||
tiny_warm_pool_push(class_idx, warm_ss);
|
||||
|
||||
// Track warm pool hit (always compiled, ENV-gated printing)
|
||||
g_warm_pool_stats[class_idx].hits++;
|
||||
|
||||
// Store blocks into cache and return first
|
||||
void* first = out[0];
|
||||
for (int i = 1; i < produced; i++) {
|
||||
cache->slots[cache->tail] = out[i];
|
||||
cache->tail = (cache->tail + 1) & cache->mask;
|
||||
}
|
||||
|
||||
#if !HAKMEM_BUILD_RELEASE
|
||||
g_unified_cache_miss[class_idx]++;
|
||||
#endif
|
||||
|
||||
if (measure) {
|
||||
uint64_t end_cycles = read_tsc();
|
||||
uint64_t delta = end_cycles - start_cycles;
|
||||
atomic_fetch_add_explicit(&g_unified_cache_refill_cycles_global, delta, memory_order_relaxed);
|
||||
atomic_fetch_add_explicit(&g_unified_cache_misses_global, 1, memory_order_relaxed);
|
||||
}
|
||||
|
||||
return HAK_BASE_FROM_RAW(first);
|
||||
}
|
||||
|
||||
// SuperSlab carve failed (produced == 0)
|
||||
// This slab is either exhausted or has no more available capacity
|
||||
// The statistics counter 'prefilled' tracks how often we try to prefill
|
||||
// To improve: implement secondary prefill (scan for more HOT superlslabs)
|
||||
static __thread int prefill_attempt_count = 0;
|
||||
if (produced == 0 && tiny_warm_pool_count(class_idx) == 0) {
|
||||
// Pool is empty and carve failed - prefill would help here
|
||||
g_warm_pool_stats[class_idx].prefilled++;
|
||||
prefill_attempt_count = 0; // Reset counter
|
||||
}
|
||||
}
|
||||
|
||||
// ========== COLD PATH: Warm pool miss, use superslab_refill ==========
|
||||
// Track warm pool miss (always compiled, ENV-gated printing)
|
||||
g_warm_pool_stats[class_idx].misses++;
|
||||
|
||||
TinyTLSSlab* tls = &g_tls_slabs[class_idx];
|
||||
|
||||
// Step 1: Ensure SuperSlab available via normal refill
|
||||
// Enhanced: If pool is empty (just became empty), try prefill
|
||||
// Prefill budget: Load 3 extra superlslabs when pool is empty for better hit rate
|
||||
int pool_prefill_budget = (tiny_warm_pool_count(class_idx) == 0) ? 3 : 1;
|
||||
|
||||
while (pool_prefill_budget > 0) {
|
||||
if (!tls->ss) {
|
||||
if (!superslab_refill(class_idx)) return HAK_BASE_FROM_RAW(NULL);
|
||||
tls = &g_tls_slabs[class_idx]; // Reload after refill
|
||||
}
|
||||
|
||||
// Warm Pool: Cache this SuperSlab for potential future use
|
||||
// This provides locality - same SuperSlab likely to have more available slabs
|
||||
if (tls->ss && tls->ss->magic == SUPERSLAB_MAGIC) {
|
||||
if (pool_prefill_budget > 1) {
|
||||
// Prefill mode: push to warm pool and load another slab
|
||||
tiny_warm_pool_push(class_idx, tls->ss);
|
||||
g_warm_pool_stats[class_idx].prefilled++;
|
||||
tls->ss = NULL; // Force next iteration to refill
|
||||
pool_prefill_budget--;
|
||||
} else {
|
||||
// Final slab: keep for carving, don't push yet
|
||||
pool_prefill_budget = 0;
|
||||
}
|
||||
} else {
|
||||
pool_prefill_budget = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Step 2: Direct carve from SuperSlab into local array (bypass TLS SLL!)
|
||||
TinySlabMeta* m = tls->meta;
|
||||
size_t bs = tiny_stride_for_class(class_idx);
|
||||
uint8_t* base = tls->slab_base
|
||||
|
||||
Reference in New Issue
Block a user