Debug Counters Implementation - Clean History
Major Features: - Debug counter infrastructure for Refill Stage tracking - Free Pipeline counters (ss_local, ss_remote, tls_sll) - Diagnostic counters for early return analysis - Unified larson.sh benchmark runner with profiles - Phase 6-3 regression analysis documentation Bug Fixes: - Fix SuperSlab disabled by default (HAKMEM_TINY_USE_SUPERSLAB) - Fix profile variable naming consistency - Add .gitignore patterns for large files Performance: - Phase 6-3: 4.79 M ops/s (has OOM risk) - With SuperSlab: 3.13 M ops/s (+19% improvement) This is a clean repository without large log files. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
244
core/hakmem_tiny_lifecycle.inc
Normal file
244
core/hakmem_tiny_lifecycle.inc
Normal file
@ -0,0 +1,244 @@
|
||||
// hakmem_tiny_lifecycle.inc
|
||||
// Phase 2D-3: Lifecycle management functions extraction
|
||||
//
|
||||
// This file contains lifecycle management functions extracted from hakmem_tiny.c
|
||||
// to improve code organization. Reduces main file by ~226 lines (16%).
|
||||
//
|
||||
// Functions:
|
||||
// - hak_tiny_trim(): Trim and cleanup operations
|
||||
// - tiny_tls_cache_drain(): TLS cache draining
|
||||
// - tiny_apply_mem_diet(): Memory diet mode application
|
||||
//
|
||||
// Cold/maintenance path - not performance critical.
|
||||
#include "tiny_tls_guard.h"
|
||||
|
||||
void hak_tiny_trim(void) {
|
||||
if (!g_tiny_initialized) return;
|
||||
// Lazy init for SS reserve env
|
||||
if (__builtin_expect(g_empty_reserve, 1) == -1) {
|
||||
char* er = getenv("HAKMEM_TINY_SS_RESERVE");
|
||||
int v = (er ? atoi(er) : EMPTY_SUPERSLAB_RESERVE);
|
||||
if (v < 0) {
|
||||
v = 0;
|
||||
} else if (v > 4) {
|
||||
v = 4; // guardrails
|
||||
}
|
||||
g_empty_reserve = v;
|
||||
}
|
||||
for (int class_idx = 0; class_idx < TINY_NUM_CLASSES; class_idx++) {
|
||||
tiny_tls_cache_drain(class_idx);
|
||||
pthread_mutex_t* lock = &g_tiny_class_locks[class_idx].m;
|
||||
pthread_mutex_lock(lock);
|
||||
TinySlab** head = &g_tiny_pool.free_slabs[class_idx];
|
||||
TinySlab* prev = NULL;
|
||||
TinySlab* slab = *head;
|
||||
while (slab) {
|
||||
TinySlab* next = slab->next;
|
||||
if (slab->free_count == slab->total_count) {
|
||||
if (prev) prev->next = next; else *head = next;
|
||||
release_slab(slab);
|
||||
slab = next;
|
||||
continue;
|
||||
}
|
||||
prev = slab;
|
||||
slab = next;
|
||||
}
|
||||
pthread_mutex_unlock(lock);
|
||||
}
|
||||
|
||||
// Optional: attempt SuperSlab reclamation for completely empty SS (conservative)
|
||||
static int g_trim_ss_enabled = -1;
|
||||
static int g_ss_partial_env = -1;
|
||||
if (g_trim_ss_enabled == -1) {
|
||||
char* env = getenv("HAKMEM_TINY_TRIM_SS");
|
||||
if (env) {
|
||||
g_trim_ss_enabled = (atoi(env) != 0) ? 1 : 0;
|
||||
} else {
|
||||
g_trim_ss_enabled = 1; // default ON for better memory efficiency
|
||||
}
|
||||
}
|
||||
if (g_ss_partial_env == -1) {
|
||||
char* env = getenv("HAKMEM_TINY_SS_PARTIAL");
|
||||
if (env) {
|
||||
g_ss_partial_enable = (atoi(env) != 0) ? 1 : 0;
|
||||
}
|
||||
char* interval = getenv("HAKMEM_TINY_SS_PARTIAL_INTERVAL");
|
||||
if (interval) {
|
||||
int v = atoi(interval);
|
||||
if (v < 1) v = 1;
|
||||
g_ss_partial_interval = (uint32_t)v;
|
||||
}
|
||||
g_ss_partial_env = 1;
|
||||
}
|
||||
if (!g_trim_ss_enabled) return;
|
||||
|
||||
uint32_t partial_epoch = 0;
|
||||
if (g_ss_partial_enable) {
|
||||
partial_epoch = atomic_fetch_add_explicit(&g_ss_partial_epoch, 1u, memory_order_relaxed) + 1u;
|
||||
}
|
||||
|
||||
// Walk the registry and collect empty SuperSlabs by class
|
||||
for (int i = 0; i < SUPER_REG_SIZE; i++) {
|
||||
SuperRegEntry* e = &g_super_reg[i];
|
||||
uintptr_t base = atomic_load_explicit((_Atomic uintptr_t*)&e->base, memory_order_acquire);
|
||||
if (base == 0) continue;
|
||||
SuperSlab* ss = e->ss;
|
||||
if (!ss || ss->magic != SUPERSLAB_MAGIC) continue;
|
||||
// Only consider completely empty SuperSlabs
|
||||
if (ss->total_active_blocks != 0) continue;
|
||||
int k = ss->size_class;
|
||||
if (k < 0 || k >= TINY_NUM_CLASSES) continue;
|
||||
// Do not free if current thread still caches this SS in TLS
|
||||
if (g_tls_slabs[k].ss == ss) continue;
|
||||
// Keep up to EMPTY_SUPERSLAB_RESERVE per class as reserve; free extras
|
||||
pthread_mutex_lock(&g_empty_lock);
|
||||
if (g_empty_reserve == 0) {
|
||||
pthread_mutex_unlock(&g_empty_lock);
|
||||
if (superslab_ref_get(ss) == 0) {
|
||||
superslab_free(ss);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
if (g_empty_superslabs[k] == NULL) {
|
||||
g_empty_superslabs[k] = ss;
|
||||
g_empty_counts[k] = 1;
|
||||
superslab_partial_release(ss, partial_epoch);
|
||||
pthread_mutex_unlock(&g_empty_lock);
|
||||
continue;
|
||||
}
|
||||
// If same as reserved, nothing to do
|
||||
if (g_empty_superslabs[k] == ss) {
|
||||
superslab_partial_release(ss, partial_epoch);
|
||||
pthread_mutex_unlock(&g_empty_lock);
|
||||
continue;
|
||||
}
|
||||
int can_free = (g_empty_counts[k] >= g_empty_reserve);
|
||||
if (!can_free) {
|
||||
// Replace reserve with this newer SS
|
||||
g_empty_superslabs[k] = ss;
|
||||
g_empty_counts[k] = 1;
|
||||
superslab_partial_release(ss, partial_epoch);
|
||||
pthread_mutex_unlock(&g_empty_lock);
|
||||
continue;
|
||||
}
|
||||
pthread_mutex_unlock(&g_empty_lock);
|
||||
// Free outside of the empty_lock(保守的: refcount==0 のときのみ)
|
||||
if (superslab_ref_get(ss) == 0) {
|
||||
superslab_free(ss);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void tiny_tls_cache_drain(int class_idx) {
|
||||
TinyTLSList* tls = &g_tls_lists[class_idx];
|
||||
|
||||
// Drain TLS SLL cache
|
||||
void* sll = g_tls_sll_head[class_idx];
|
||||
g_tls_sll_head[class_idx] = NULL;
|
||||
g_tls_sll_count[class_idx] = 0;
|
||||
while (sll) {
|
||||
void* next = *(void**)sll;
|
||||
tiny_tls_list_guard_push(class_idx, tls, sll);
|
||||
tls_list_push(tls, sll);
|
||||
sll = next;
|
||||
}
|
||||
|
||||
// Drain fast tier cache
|
||||
void* fast = g_fast_head[class_idx];
|
||||
g_fast_head[class_idx] = NULL;
|
||||
g_fast_count[class_idx] = 0;
|
||||
while (fast) {
|
||||
void* next = *(void**)fast;
|
||||
tiny_tls_list_guard_push(class_idx, tls, fast);
|
||||
tls_list_push(tls, fast);
|
||||
fast = next;
|
||||
}
|
||||
|
||||
// Spill TLS list back to owners
|
||||
void* head = NULL;
|
||||
void* tail = NULL;
|
||||
while (1) {
|
||||
uint32_t taken = tls_list_bulk_take(tls, 0u, &head, &tail);
|
||||
if (taken == 0u || head == NULL) break;
|
||||
void* cur = head;
|
||||
while (cur) {
|
||||
void* next = *(void**)cur;
|
||||
SuperSlab* ss = hak_super_lookup(cur);
|
||||
if (ss && ss->magic == SUPERSLAB_MAGIC) {
|
||||
hak_tiny_free_superslab(cur, ss);
|
||||
} else {
|
||||
TinySlab* slab = hak_tiny_owner_slab(cur);
|
||||
if (slab) {
|
||||
int cls = slab->class_idx;
|
||||
size_t block_size = g_tiny_class_sizes[cls];
|
||||
int block_idx = (int)(((uintptr_t)cur - (uintptr_t)slab->base) / block_size);
|
||||
pthread_mutex_t* lock = &g_tiny_class_locks[cls].m;
|
||||
pthread_mutex_lock(lock);
|
||||
if (hak_tiny_is_used(slab, block_idx)) {
|
||||
hak_tiny_set_free(slab, block_idx);
|
||||
int was_full = (slab->free_count == 0);
|
||||
slab->free_count++;
|
||||
g_tiny_pool.free_count[cls]++;
|
||||
if (was_full) {
|
||||
move_to_free_list(cls, slab);
|
||||
}
|
||||
if (slab->free_count == slab->total_count) {
|
||||
TinySlab** headp = &g_tiny_pool.free_slabs[cls];
|
||||
TinySlab* prev = NULL;
|
||||
for (TinySlab* s = *headp; s; prev = s, s = s->next) {
|
||||
if (s == slab) {
|
||||
if (prev) prev->next = s->next;
|
||||
else *headp = s->next;
|
||||
break;
|
||||
}
|
||||
}
|
||||
release_slab(slab);
|
||||
}
|
||||
}
|
||||
pthread_mutex_unlock(lock);
|
||||
}
|
||||
}
|
||||
cur = next;
|
||||
}
|
||||
}
|
||||
|
||||
// Release TLS-bound SuperSlab reference when caches are empty
|
||||
TinyTLSSlab* tls_slab = &g_tls_slabs[class_idx];
|
||||
SuperSlab* held_ss = tls_slab->ss;
|
||||
if (held_ss) {
|
||||
int keep_binding = 0;
|
||||
if (tls_slab->meta && tls_slab->meta->used > 0) {
|
||||
keep_binding = 1;
|
||||
}
|
||||
if (!keep_binding) {
|
||||
tls_slab->ss = NULL;
|
||||
tls_slab->meta = NULL;
|
||||
tls_slab->slab_base = NULL;
|
||||
tls_slab->slab_idx = 0;
|
||||
superslab_ref_dec(held_ss);
|
||||
}
|
||||
}
|
||||
g_tls_active_slab_a[class_idx] = NULL;
|
||||
g_tls_active_slab_b[class_idx] = NULL;
|
||||
}
|
||||
|
||||
static void tiny_apply_mem_diet(void) {
|
||||
g_mag_cap_limit = 64;
|
||||
for (int class_idx = 0; class_idx < TINY_NUM_CLASSES; class_idx++) {
|
||||
if (g_fast_cap[class_idx] > 0) {
|
||||
uint16_t limit = (class_idx <= 3) ? 48 : 32;
|
||||
if (limit < 16) limit = 16;
|
||||
if (g_fast_cap[class_idx] > limit) {
|
||||
g_fast_cap[class_idx] = limit;
|
||||
}
|
||||
}
|
||||
TinyTLSList* tls = &g_tls_lists[class_idx];
|
||||
uint32_t new_cap = tls->cap;
|
||||
if (new_cap > (uint32_t)g_mag_cap_limit) new_cap = (uint32_t)g_mag_cap_limit;
|
||||
if (new_cap < 16u) new_cap = 16u;
|
||||
tls->cap = new_cap;
|
||||
tls->refill_low = tiny_tls_default_refill(new_cap);
|
||||
tls->spill_high = tiny_tls_default_spill(new_cap);
|
||||
tiny_tls_publish_targets(class_idx, new_cap);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user