Tiny: fix header/stride mismatch and harden refill paths

- Root cause: header-based class indexing (HEADER_CLASSIDX=1) wrote a 1-byte
  header during allocation, but linear carve/refill and initial slab capacity
  still used bare class block sizes. This mismatch could overrun slab usable
  space and corrupt freelists, causing reproducible SEGV at ~100k iters.

Changes
- Superslab: compute capacity with effective stride (block_size + header for
  classes 0..6; class7 remains headerless) in superslab_init_slab(). Add a
  debug-only bound check in superslab_alloc_from_slab() to fail fast if carve
  would exceed usable bytes.
- Refill (non-P0 and P0): use header-aware stride for all linear carving and
  TLS window bump operations. Ensure alignment/validation in tiny_refill_opt.h
  also uses stride, not raw class size.
- Drain: keep existing defense-in-depth for remote sentinel and sanitize nodes
  before splicing into freelist (already present).

Notes
- This unifies the memory layout across alloc/linear-carve/refill with a single
  stride definition and keeps class7 (1024B) headerless as designed.
- Debug builds add fail-fast checks; release builds remain lean.

Next
- Re-run Tiny benches (256/1024B) in debug to confirm stability, then in
  release. If any remaining crash persists, bisect with HAKMEM_TINY_P0_BATCH_REFILL=0
  to isolate P0 batch carve, and continue reducing branch-miss as planned.
This commit is contained in:
Moe Charm (CI)
2025-11-09 18:55:50 +09:00
parent ab68ee536d
commit 1010a961fb
171 changed files with 10238 additions and 634 deletions

View File

@ -6,6 +6,19 @@
#include "../pool_tls.h"
#endif
// Centralized OS mapping boundary to keep syscalls in one place
static inline void* hak_os_map_boundary(size_t size, uintptr_t site_id) {
#if HAKMEM_DEBUG_TIMING
HKM_TIME_START(t_mmap);
#endif
void* p = hak_alloc_mmap_impl(size);
#if HAKMEM_DEBUG_TIMING
HKM_TIME_END(HKM_CAT_SYSCALL_MMAP, t_mmap);
#endif
(void)site_id; // reserved for future accounting/learning
return p;
}
__attribute__((always_inline))
inline void* hak_alloc_at(size_t size, hak_callsite_t site) {
#if HAKMEM_DEBUG_TIMING
@ -144,33 +157,24 @@ inline void* hak_alloc_at(size_t size, hak_callsite_t site) {
//
// Solution: Use mmap for gap when ACE failed (ACE disabled or OOM)
// Track final fallback mmaps globally
extern _Atomic uint64_t g_final_fallback_mmap_count;
void* ptr;
if (size >= threshold) {
// Large allocation (>= 2MB default): use mmap
#if HAKMEM_DEBUG_TIMING
HKM_TIME_START(t_mmap);
#endif
ptr = hak_alloc_mmap_impl(size);
#if HAKMEM_DEBUG_TIMING
HKM_TIME_END(HKM_CAT_SYSCALL_MMAP, t_mmap);
#endif
// Large allocation (>= 2MB default): descend via single boundary
atomic_fetch_add(&g_final_fallback_mmap_count, 1);
ptr = hak_os_map_boundary(size, site_id);
} else if (size >= TINY_MAX_SIZE) {
// Mid-range allocation (1KB-2MB): try mmap as final fallback
// This handles the gap when ACE is disabled or failed
atomic_fetch_add(&g_final_fallback_mmap_count, 1);
static _Atomic int gap_alloc_count = 0;
int count = atomic_fetch_add(&gap_alloc_count, 1);
#if HAKMEM_DEBUG_VERBOSE
if (count < 3) {
fprintf(stderr, "[HAKMEM] INFO: Using mmap for mid-range size=%zu (ACE disabled or failed)\n", size);
}
if (count < 3) fprintf(stderr, "[HAKMEM] INFO: mid-gap fallback size=%zu\n", size);
#endif
#if HAKMEM_DEBUG_TIMING
HKM_TIME_START(t_mmap);
#endif
ptr = hak_alloc_mmap_impl(size);
#if HAKMEM_DEBUG_TIMING
HKM_TIME_END(HKM_CAT_SYSCALL_MMAP, t_mmap);
#endif
ptr = hak_os_map_boundary(size, site_id);
} else {
// Should never reach here (size <= TINY_MAX_SIZE should be handled by Tiny)
static _Atomic int oom_count = 0;